Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sintering, microstructure, and mechanical properties of ZrO2-doped Al2O3

, & ORCID Icon
Pages 311-321 | Received 14 Mar 2023, Accepted 26 Sep 2023, Published online: 03 Oct 2023

References

  • Riley F. Structural ceramics. Cambridge: Cambridge University Press; 2009.
  • Cho J, Harmer M, Chan HM, et al. Effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide. J Am Ceram Soc. 1997;80:1013–1017. doi:10.1111/j.1151-2916.1997.tb02936.x
  • Skrovanek SD, Bradt R. Microhardness of a fine-grain-size Al2O3. J Am Ceram Soc. 1979;62(3-4):215–216. doi:10.1111/j.1151-2916.1979.tb19059.x
  • Rice R. Ceramic tensile strength-grain size relations: grain sizes, slopes, and branch intersections. J Mater Sci. 1997;32(7):1673–1692. doi:10.1023/A:1018511613779
  • Roy RS, Guchhait H, Chanda A, et al. Improved sliding wear-resistance of alumina with sub-micron grain size: a comparison with coarser grained material. J Eur Ceram Soc. 2007;27(16):4737–4743. doi:10.1016/j.jeurceramsoc.2007.02.205
  • Muchtar A, Lim L. Indentation fracture toughness of high purity submicron alumina. Acta Mater. 1998;46(5):1683–1690. doi:10.1016/S1359-6454(97)00371-6
  • Krell A, Blank P, Ma H, et al. Processing of high-density submicrometer Al2O3 for new applications. J Am Ceram Soc. 2003;86(4):546–553. doi:10.1111/j.1151-2916.2003.tb03339.x
  • Gao L, Hong J, Miyamoto H, et al. Bending strength and microstructure of Al2O3 ceramics densified by spark plasma sintering. J Eur Ceram Soc. 2000;20(12):2149–2152. doi:10.1016/S0955-2219(00)00086-8
  • Chakravarty D, Bysakh S, Muraleedharan K, et al. Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness. J Am Ceram Soc. 2008;91(1):203–208. doi:10.1111/j.1551-2916.2007.02094.x
  • Weibel A, Bouchet R, Denoyel R, et al. Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure. J Eur Ceram Soc. 2007;27(7):2641–2646. doi:10.1016/j.jeurceramsoc.2006.11.073
  • He Z, Ma J. Grain-growth rate constant of hot-pressed alumina ceramics. Mater Lett. 2000;44(1):14–18. doi:10.1016/S0167-577X(99)00289-X
  • Lin FJ, Jonghe LC, Rahaman MN. Microstructure refinement of sintered alumina by a Two-step sintering technique. J Am Ceram Soc. 1997;80(9):2269–2277. doi:10.1111/j.1151-2916.1997.tb03117.x
  • Krell A, Klaffke D. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al2O3/TiC, and zirconia. J Am Ceram Soc. 1996;79(5):1139–1146. doi:10.1111/j.1151-2916.1996.tb08565.x
  • Krell A, Blank P. Grain size dependence of hardness in dense submicrometer alumina. J Am Ceram Soc. 1995;78(4):1118–1120. doi:10.1111/j.1151-2916.1995.tb08452.x
  • Krell A, Blank P. The influence of shaping method on the grain size dependence of strength in dense submicrometre alumina. J Eur Ceram Soc. 1996;16(11):1189–1200. doi:10.1016/0955-2219(96)00044-1
  • Koo J, Hong K, Park J, et al. Effect of grain size on transmittance and mechanical strength of sintered alumina. Mater Sci Eng A. 2004;374(1):191–195.
  • Galusek D, Ghillányová K, Sedláček J, et al. The influence of additives on microstrucutre of sub-micron alumina ceramics prepared by two-stage sintering. J Eur Ceram Soc. 2012;32(9):1965–1970. doi:10.1016/j.jeurceramsoc.2011.11.038
  • Cho J, Wang CM, Chan HM, et al. Role of segregating dopants on the improved creep resistance of aluminum oxide. Acta Mater. 1999;47(15):4197–4207. doi:10.1016/S1359-6454(99)00278-5
  • Behera SK. Kinetics of grain growth in La-doped ultrapure Al2O3. J Alloys Compd. 2016;683:444–449. doi:10.1016/j.jallcom.2016.05.109
  • Franken PEC, Gehring AP. Grain boundary analysis of MgO-doped Al2O3. J Mater Sci. 1981;16(2):384–388. doi:10.1007/BF00738627
  • Liu Z. Zr-doped Al2O3 grain boundary and interfacial microstructure. Microsc Microanal. 2017;23(S1):1668–1669. doi:10.1017/S143192761700900X
  • Behera SK, Cantwell PR, Harmer MP. A grain boundary mobility discontinuity in reactive element Zr-doped Al2O3. Scr Mater. 2014;90-91:33–36. doi:10.1016/j.scriptamat.2014.07.010
  • Wakai F, Nagano T, Iga T. Hardening in creep of alumina by zirconium segregation at the grain boundary. J Am Ceram Soc. 1997;80(9):2361–2366. doi:10.1111/j.1151-2916.1997.tb03128.x
  • Ikuhara Y, Yoshida H, Sakuma T. Impurity effects on grain boundary strength in structural ceramics. Mater Sci Eng A. 2001;319-321:24–30. doi:10.1016/S0921-5093(01)01035-8
  • Yoshida H, Okada K, Ikuhara Y, et al. Improvement of high-temperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain boundaries. Philos Mag Lett. 1997;76(1):9–14. doi:10.1080/095008397179327
  • Kingery WD. Structure and properties of MgO and Al2O3 ceramics. Am Ceram Soc. 1984;10.
  • Baruah B, Anand R, Behera SK. Master sintering curve and activation energy of sintering of ZrO2-doped Al2O3. Ceram Int. 2021;47(5):7253–7257. doi:10.1016/j.ceramint.2020.11.001
  • Green DJ. Critical microstructures for microcracking in Al2O3-ZrO2 composites. J Am Ceram Soc. 1982;65(12):610–614. doi:10.1111/j.1151-2916.1982.tb09939.x
  • Aksay I, Lange F, Davis B. Uniformity of Al2O3-ZrO2 composites by colloidal filtration. J Am Ceram Soc. 1983;66(10):c190–c192. doi:10.1111/j.1151-2916.1983.tb10550.x
  • Balmer ML, Lange FF, Jayaram V, et al. Development of nano-composite microstructures in ZrO2-Al2O3 via the solution precursor method. J Am Ceram Soc. 1995;78(6):1489–1494. doi:10.1111/j.1151-2916.1995.tb08842.x
  • Lange F, Hirlinger MM. Hindrance of grain growth in Al2O3 by ZrO2 inclusions. J Am Ceram Soc. 1984;67(3):164–168. doi:10.1111/j.1151-2916.1984.tb19734.x
  • He H, Zhao R, Tian H, et al. Sintering behavior of alumina whisker reinforced zirconia ceramics in hot oscillatory pressing. J Adv Ceram. 2022;11(6):893–900. doi:10.1007/s40145-022-0583-5
  • Jia Y, Su X, Wu Y, et al. Flash sintering of 3YSZ/Al2O3-platelet composites. J Am Ceram Soc. 2020;103(4):2351–2361. doi:10.1111/jace.16929
  • Lallemant L, Roussel N, Fantozzi G, et al. Effect of amount of doping agent on sintering, microstructure and optical properties of Zr- and La-doped alumina sintered by SPS. J Eur Ceram Soc. 2014;34(5):1279–1288. doi:10.1016/j.jeurceramsoc.2013.11.015
  • Hou PY. Impurity effects on alumina scale growth. J Am Ceram Soc. 2003;86(4):660–668. doi:10.1111/j.1151-2916.2003.tb03355.x
  • Procopio A, Zavaliangos A, Cunningham J. Analysis of the diametrical compression test and the applicability to plastically deforming materials. J Mater Sci. 2003;38(17):3629–3639. doi:10.1023/A:1025681432260
  • C. ASTM. (2003). 1499-03. Standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature. West Conshohocken, Pennsylvania: ASTM International.
  • Sato E, Carry C. Effect of powder granulometry and pre-treatment on sintering behavior of submicron-grained α-alumina. J Eur Ceram Soc. 1995;15(1):9–16. doi:10.1016/0955-2219(95)91294-X
  • Westmacott K, Fountain C, Stirton R. On the spacing of dispersed obstacles. Acta Metall. 1966;14(11):1628–1629. doi:10.1016/0001-6160(66)90184-2
  • Kocks U. On the spacing of dispersed obstacles. Acta Metall. 1966;14(11):1629–1631. doi:10.1016/0001-6160(66)90185-4
  • Anand R, Nayak BB, Behera SK. Coarsening kinetics of nanostructured ZrO2 in Zr-doped SiCN ceramic hybrids. J Alloys Compd. 2019;811:151939. doi:10.1016/j.jallcom.2019.151939
  • Anand R, Sahoo SP, Nayak BB, et al. Phase evolution in Zr-doped preceramic polymer derived SiZrOC hybrids. Ceram Int. 2020;46(7):9962–9967. doi:10.1016/j.ceramint.2019.12.196
  • Chantikul P, Bennison SJ, Lawn BR. Role of grain size in the strength and R-curve properties of alumina. J Am Ceram Soc. 1990;73(8):2419–2427. doi:10.1111/j.1151-2916.1990.tb07607.x
  • Tuan WH, Chen JR, Yang TJ. Minimum amount of nano-sized nickel particles to enhance the strength of alumina. J Eur Ceram Soc. 2007;27(16):4705–4709. doi:10.1016/j.jeurceramsoc.2007.03.033
  • Sternitzke M. Structural ceramic nanocomposites. J Eur Ceram Soc. 1997;17(9):1061–1082. doi:10.1016/S0955-2219(96)00222-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.