Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

3D-printed porous Al2O3 membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation

, , , , &
Pages 364-374 | Received 27 Mar 2023, Accepted 26 Sep 2023, Published online: 12 Oct 2023

References

  • Chen J, Di Z, Shi J, et al. Marine oil spill pollution causes and governance: a case study of Sanchi tanker collision and explosion. J Cleaner Prod. 2020;273:122978. doi:10.1016/j.jclepro.2020.122978
  • Moatmed SM, Khedr MH, El-dek SI, et al. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. J Environ Chem Eng. 2019;7(6):103508. doi:10.1016/j.jece.2019.103508
  • Xu S, Wang Q, Wang N, et al. Environmentally-friendly fabrication of a recyclable oil-water separation material using copper mesh for immiscible oil/water mixtures. Colloids Surf A. 2019;583:124010. doi:10.1016/j.colsurfa.2019.124010
  • Xi G-Q, Liu T, Ma C, et al. Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation. Colloids Surf A. 2019;583:124028.
  • Wang J, Wu J, Han F. Eco-friendly and scratch-resistant hybrid coating on mesh for gravity-driven oil/water separation. J Cleaner Prod. 2019;241:118369. doi:10.1016/j.jclepro.2019.118369
  • Yin Z, Chen X, Zhou T, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol. 2022;286:120504. doi:10.1016/j.seppur.2022.120504
  • Yin Z, Xue M, Luo Y, et al. Excellent static and dynamic anti-icing properties of hierarchical structured ZnO superhydrophobic surface on Cu substrates. Chem Phys Lett. 2020;755:137806. doi:10.1016/j.cplett.2020.137806
  • Yin Z, Cheng Y, Deng Y, et al. Functional and versatile colorful superhydrophobic nanocellulose-based membrane with high durability, high-efficiency oil/water separation and oil spill cleanup. Surf Coat Technol. 2022;445:128714. doi:10.1016/j.surfcoat.2022.128714
  • Yin Z, Li Z, Deng Y, et al. Multifunctional CeO2-coated pulp/cellulose nanofibers (CNFs) membrane for wastewater treatment: effective oil/water separation, organic contaminants photodegradation, and anti-bioadhesion activity. Ind Crops Prod. 2023;197:116672. doi:10.1016/j.indcrop.2023.116672
  • Padaki M, Surya Murali R, Abdullah MS, et al. Membrane technology enhancement in oil–water separation. A review. Desalination. 2015;357:197–207. doi:10.1016/j.desal.2014.11.023
  • Chu Z, Feng Y, Seeger S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed Engl. 2015;54(8):2328–2338. doi:10.1002/anie.201405785
  • Kujlu R, Moslemzadeh M, Rahimi S, et al. Selecting the best stabilization/solidification method for the treatment of oil-contaminated soils using simple and applied best-worst multi-criteria decision-making method. Environ Pollut. 2020;263:114447. doi:10.1016/j.envpol.2020.114447
  • Shestakov VA, Sagidullin AK, Stoporev AS, et al. Analysis of methane hydrate nucleation in water-in-oil emulsions: isothermal vs constant cooling ramp method and new method for data treatment. J Mol Liq. 2020;318:114018. doi:10.1016/j.molliq.2020.114018
  • Chen X, Yin Z, Yan J, et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surf Coat Technol. 2023;467:129701. doi:10.1016/j.surfcoat.2023.129701
  • Yin Z, Yuan F, Zhou D, et al. Ultra dynamic water repellency and anti-icing performance of superhydrophobic ZnO surface on the printed circuit board (PCB). Chem Phys Lett. 2021;771:138558. doi:10.1016/j.cplett.2021.138558
  • Liu Y, Wang X, Feng S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation. Adv Funct Mater. 2019;29(29):1902488. doi:10.1002/adfm.201902488
  • Sharma M, Joshi M, Nigam S, et al. Efficient oil removal from wastewater based on polymer coated superhydrophobic tetrapodal magnetic nanocomposite adsorbent. Appl Mater Today. 2019;17:130–141. doi:10.1016/j.apmt.2019.07.007
  • Zhao L, Du Z, Tai X, et al. One-step facile fabrication of hydrophobic SiO2 coated super-hydrophobic/super-oleophilic mesh via an improved stöber method to efficient oil/water separation. Colloids Surf, A. 2021;623:126404.
  • Deng Y, Peng C, Dai M, et al. Recent development of super-wettable materials and their applications in oil-water separation. J Cleaner Prod. 2020;266:121624. doi:10.1016/j.jclepro.2020.121624
  • Baig U, Faizan M, Sajid M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: a review. Adv Colloid Interface Sci. 2020;285:102276. doi:10.1016/j.cis.2020.102276
  • Li Z, Zhang T, Wang M, et al. Hierarchical structurized waste brick with opposite wettability for on-demand oil/water separation. Chemosphere. 2020;251:126348. doi:10.1016/j.chemosphere.2020.126348
  • Gong Z, Yang N, Chen Z, et al. Fabrication of meshes with inverse wettability based on the TiO2 nanowires for continuous oil/water separation. Chem Eng J. 2020;380:122524. doi:10.1016/j.cej.2019.122524
  • Han X, Huang Y, Peng X, et al. 3D continuous copper networks coated with graphene in Al-matrix composites for efficient thermal management. Compos Struct. 2021;258:113177. doi:10.1016/j.compstruct.2020.113177
  • Usman J, Othman MHD, Ismail AF, et al. An overview of superhydrophobic ceramic membrane surface modification for oil-water separation. J Mater Res Technol. 2021;12:643–667. doi:10.1016/j.jmrt.2021.02.068
  • Jin ZP, Mei H, Yan YK, et al. 3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation. J Materiomics. 2021;7(1):8–18. doi:10.1016/j.jmat.2020.07.002
  • Zhao X, Luo Y, Tan P, et al. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation. Int J Biol Macromol. 2019;132:406–415. doi:10.1016/j.ijbiomac.2019.03.219
  • Nine MJ, Kabiri S, Sumona AK, et al. Superhydrophobic/superoleophilic natural fibres for continuous oil-water separation and interfacial dye-adsorption. Sep Purif Technol. 2020;233:116062.
  • Su C, Xu Y, Zhang W, et al. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water. Appl Surf Sci. 2012;258(7):2319–2323. doi:10.1016/j.apsusc.2011.10.005
  • Rasouli S, Rezaei N, Hamedi H, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: a comprehensive review. Mater Des. 2021;204:109599. doi:10.1016/j.matdes.2021.109599
  • Jin Z, Mei H, Pan L, et al. Superhydrophobic self-cleaning hierarchical micro-/nanocomposite coating with high corrosion resistance and durability. ACS Sustain Chem Eng. 2021;9(11):4111–4121.
  • Xie A, Cui J, Chen Y, et al. One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation. Surf Coat Technol. 2019;361:19–26. doi:10.1016/j.surfcoat.2019.01.040
  • Yan L, Liu C, Xia J, et al. CNTs/TiO2 composite membrane with adaptable wettability for on-demand oil/water separation. J Cleaner Prod. 2020;275:124011. doi:10.1016/j.jclepro.2020.124011
  • Amirpoor S, Siavash Moakhar R, Dolati A. A novel superhydrophilic/ superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water. Surf Coat Technol. 2020;394:125859. doi:10.1016/j.surfcoat.2020.125859
  • Li K, Chen W, Wu W, et al. Facile fabrication of superhydrophilic/underwater superoleophobic polyvinyl acetate/sodium silicate composite coating for the effective water/oil separation and the study on the anti-fouling property, durability and separation mechanism. Prog Org Coat. 2021;150:105979. doi:10.1016/j.porgcoat.2020.105979
  • Qing W, Li X, Wu Y, et al. In situ silica growth for superhydrophilic-underwater superoleophobic silica/PVA nanofibrous membrane for gravity-driven oil-in-water emulsion separation. J Membr Sci. 2020;612:118476. doi:10.1016/j.memsci.2020.118476
  • Gunatilake UB, Bandara J. Efficient removal of oil from oil contaminated water by superhydrophilic and underwater superoleophobic nano/micro structured TiO2 nanofibers coated mesh. Chemosphere. 2017;171:134–141. doi:10.1016/j.chemosphere.2016.12.031
  • Tijing LD, Dizon JRC, Ibrahim I, et al. 3D printing for membrane separation, desalination and water treatment. Appl Mater Today. 2020;18:100486. doi:10.1016/j.apmt.2019.100486
  • Yanar N, Kallem P, Son M, et al. A new era of water treatment technologies: 3D printing for membranes. J Ind Eng Chem. 2020;91:1–14. doi:10.1016/j.jiec.2020.07.043
  • Yuan S, Strobbe D, Li X, et al. 3D printed chemically and mechanically robust membrane by selective laser sintering for separation of oil/water and immiscible organic mixtures. Chem Eng J. 2020;385:123816. doi:10.1016/j.cej.2019.123816
  • Liang Y, Zhao J, Huang Q, et al. PVDF fiber membrane with ordered porous structure via 3D printing near field electrospinning. J Membr Sci. 2021;618:118709. doi:10.1016/j.memsci.2020.118709
  • Yin Z, Li M, Li Z, et al. A harsh environment resistant robust Co(OH)2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. J Environ Manag. 2023;342:118127. doi:10.1016/j.jenvman.2023.118127
  • Yin Z, Yuan F, Li M, et al. Self-cleaning, underwater writable, heat-insulated and photocatalytic cellulose membrane for high-efficient oil/water separation and removal of hazardous organic pollutants. Prog Org Coat. 2021;157:106311. doi:10.1016/j.porgcoat.2021.106311
  • Lee J-Y, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–133. doi:10.1016/j.apmt.2017.02.004
  • Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. 2013;67(5-8):1721–1754.
  • Frederik K, Karl A, Werner B, et al. Three-dimensional printing of transparent fused silica glass. J Nature. 2017;544(7650):337–339.
  • Nadagouda MN, Ginn M, Rastogi V. A review of 3D printing techniques for environmental applications. Curr Opin Chem Eng. 2020;28:173–178. doi:10.1016/j.coche.2020.08.002
  • Zhang M, Mei H, Chang P, et al. 3D printing of structured electrodes for rechargeable batteries. J Mater Chem A. 2020;8:10670–10694.
  • Mei H, Zhao X, Zhou S, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem Eng J. 2019;372:940–945.
  • Chen Z, Zhang D, Peng E, et al. 3D-printed ceramic structures with in situ grown whiskers for effective oil/water separation. Chem Eng J. 2019;373:1223–1232. doi:10.1016/j.cej.2019.05.150
  • Gu H, Li G, Li P, et al. Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation. Appl Surf Sci. 2020;512:144837. doi:10.1016/j.apsusc.2019.144837
  • Li X, Shan H, Zhang W, et al. 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation. Sep Purif Technol. 2020;237:116324. doi:10.1016/j.seppur.2019.116324
  • Wu H, Fahy WP, Kim S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci. 2020;111:100638. doi:10.1016/j.pmatsci.2020.100638
  • Huang S, Wang W, Pan Y, et al. Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation. J Mater Chem Mater Energy Sustain. 2018;6(31):15057–15063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.