54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptive neural trajectory tracking non-affine control for a hovercraft subject to multiple safety constraints

, &
Received 20 Dec 2023, Accepted 07 Mar 2024, Published online: 18 Apr 2024

References

  • Burger M, Guay M. 2010. Robust constraint satisfaction for continuous-time nonlinear systems in strict feedback form. IEEE Trans Autom Control. 55:2597–2601. doi:10.1109/TAC.2010.2061090.
  • Dong C, Ye Q, Dai S-L. 2020. Neural-network-based adaptive output-feedback formation tracking control of USVs under collision avoidance and connectivity maintenance constraints. Neurocomputing. 401:101–112. doi:10.1016/j.neucom.2020.03.033.
  • Du J, Hu X, Krstić M, Sun Y. 2016. Robust dynamic positioning of ships with disturbances under input saturation. Automatica. 73:207–214. doi:10.1016/j.automatica.2016.06.020.
  • Fu M, Dong L, Xu Y, Bai D. 2022. A novel asymmetrical integral barrier Lyapunov function-based trajectory tracking control for hovercraft with multiple constraints. Ocean Eng. 263:112132. doi:10.1016/j.oceaneng.2022.112132.
  • Fu M, Dong L, Xu Y, Wang C. 2020a. Adaptive trajectory tracking safety control of air cushion vehicle with unknown input effective parameters. Appl Sci. 10:5695. doi:10.3390/app10165695.
  • Fu M, Gao S, Wang C, Li M. 2018. Human-centered automatic tracking system for underactuated Hovercraft based on adaptive chattering-free full-order terminal sliding mode control. IEEE Access. 6:1–1. doi:10.1109/ACCESS.2018.2812929.
  • Fu M, Wang Q. 2023. Safety-guaranteed, robust, nonlinear, path-following control of the underactuated hovercraft based on FTESO. J Mar Sci Eng. 11:1235. doi:10.3390/jmse11061235.
  • Fu M, Wang Y, Wang C. 2017. Modeling the motion of ocean vehicles. Harbin: Harbin Engineering University Press.
  • Fu M, Zhang T, Ding F, Wang D. 2020b. Safety-guaranteed adaptive neural motion control for a hovercraft with multiple constraints. Ocean Eng. 220(11):108401.
  • Gilbert E, Kolmanovsky I. 2002. Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor. Automatica. 38:2063–2073. doi:10.1016/S0005-1098(02)00135-8.
  • Guo J, Zhou J, Zhao B. 2020. Three-dimensional integrated guidance and control for strap-down missiles considering seeker’s field-of-view angle constraint. Trans Inst Meas Control. 42:1097–1109. doi:10.1177/0142331219883719.
  • He W, Ge SS. 2016. Cooperative control of a nonuniform gantry crane with constrained tension. Automatica. 66:146–154. doi:10.1016/j.automatica.2015.12.026.
  • He W, Kong L, Dong Y, Yu Y, Yang C, Sun C. 2017. Fuzzy tracking control for a class of uncertain MIMO nonlinear systems with state constraints. IEEE Trans Syst Man Cybern: Syst. 49:543–554. doi:10.1109/TSMC.2017.2749124.
  • He W, Xue C, Yu X, Li Z, Yang C. 2020. Admittance-based controller design for physical human – robot interaction in the constrained task space. IEEE Trans Autom Sci Eng. pp(99):1–13.
  • Hua F. 2008. Analysis and consideration on safety of all-lift Hovercraft. Shanghai, China: SHIP &BOAT.
  • Jin X. 2016. Adaptive fault tolerant control for a class of input and state constrained MIMO nonlinear systems. Int J Robust Nonlinear Control. 26:286–302. doi:10.1002/rnc.3312.
  • Liu YJ, Lu S, Tong S, Chen X, Chen CL, Li DJ. 2018. Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica. 87:83–93. doi:10.1016/j.automatica.2017.07.028.
  • Mayne DQ, Rawlings JB. 2001. Correction to “Constrained model predictive control: stability and optimality”. Automatica. 37:483. doi:10.1016/S0005-1098(00)00173-4.
  • Mu C, Wei X, Zhang H, Hu X, Han J. 2023. Disturbance observer-based backstepping control for leader–follower ships with disturbances ships and offshore structures. Ships Offsh Struct. 19(4):532–540.
  • Qin H, Chen H, Sun Y. 2020. Distributed finite-time fault-tolerant error constraint containment algorithm for multiple ocean bottom flying nodes with tan-type barrier Lyapunov function. Int J Robust Nonlin Control. 30:5157–5180. doi:10.1002/rnc.5046.
  • Rigatos G. 2022. A nonlinear optimal control approach for underactuated offshore cranes. Ships Offsh Struct. 19(2):159–172.
  • Shen Z, Liu Y, Nie Y, et al. 2023. Prescribed performance LOS guidance-based dynamic surface path following control of unmanned sailboats. Ocean Eng. 284, Article number: 1151182. doi:10.1016/j.oceaneng.2023.115182.
  • Sun W, Su S, Wu Y, Xia J, Nguyen V. 2019. Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans Cybern. 50(8):3424–3432. doi:10.1109/TCYB.2019.2951520.
  • Tran HK, Son HH, Duc PV, Trang TT, Nguyen HN. 2020. Improved genetic algorithm tuning controller design for autonomous hovercraft. Processes. 8:66. doi:10.3390/pr8010066.
  • Wang D, Ge SS, Fu M, Li D. 2021. Bioinspired neurodynamics based formation control for unmanned surface vehicles with line-of-sight range and angle constraints. Neurocomputing. 425:127–134. doi:10.1016/j.neucom.2020.02.107.
  • Wang Y, Jiang X, She W, Ding F. 2019. Tracking control with input saturation and full-state constraints for surface vessels. IEEE Access. 7:144741–144755. doi:10.1109/ACCESS.2019.2945501.
  • Wang Y, Liu C. 2023. Distributed finite-time adaptive fault-tolerant formation–containment control for USVs with dynamic event-triggered mechanism. Ocean Eng. 280:114524. doi:10.1016/j.oceaneng.2023.114524.
  • Wu C, Zhu G, Lu J. 2023. Indirect adaptive neural tracking control of USVs under injection and deception attacks. Ocean Eng. 270:113641. doi:10.1016/j.oceaneng.2023.113641.
  • Xia H, Chen J, Liu Z. 2019a. Coordinated motion control for automated vehicles considering steering and driving force saturations. Trans Inst Meas Control. 42:157–166. doi:10.1177/0142331219879342.
  • Xia J, Zhang Y, Yang C, Wang M, Annamalai A. 2019b. An improved adaptive online neural control for robot manipulator systems using integral barrier Lyapunov functions. Int J Syst Sci. 50:638–651. doi:10.1080/00207721.2019.1567863.
  • Xie J, Chen M, Zhu D. 2023. A cascaded model predictive control based trajectory tracking controller for an autonomous and remotely operated vehicle with LOS guidance. Ships Offsh Struct. doi:10.1080/17445302.2023.2265114.
  • Xie W, Cabecinhas D, Cunha R, Silvestre C. 2020. Global practical tracking for a hovercraft with unmeasured linear velocity and disturbances. IFAC-PapersOnLine. 53:8959–8964. doi:10.1016/j.ifacol.2020.12.1482.
  • Ye D, Wang K, Yang H, Zhao X. 2020. Integral barrier Lyapunov function-based adaptive fuzzy output feedback control for nonlinear delayed systems with time-varying full-state constraints. Int J Adapt Control Signal Process. 34:1677–1696. doi:10.1002/acs.3172.
  • Zhang G, Huang C, Li J, Zhang X. 2020. Constrained coordinated path-following control for underactuated surface vessels with the disturbance rejection mechanism. Ocean Eng. 196:106725. doi:10.1016/j.oceaneng.2019.106725.
  • Zhang S, Tang Z, Ge SS, He W. 2017. Adaptive neural dynamic surface control of output constrained non-linear systems with unknown control direction. IET Control Theory Appl. 11:2994–3003. doi:10.1049/iet-cta.2017.0556.
  • Zhao L, Wang F, Bai Y. 2023. Route planning for autonomous vessels based on improved artificial fish swarm algorithm. Ships Offsh Struct. 18:897–906. doi:10.1080/17445302.2022.2081423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.