213
Views
0
CrossRef citations to date
0
Altmetric
Review

Diabetes mellitus and COVID-19: review of a lethal interaction from the cellular and molecular level to the bedside

, , , , &
Pages 1-19 | Received 20 Aug 2021, Accepted 25 Oct 2021, Published online: 15 Nov 2021

References

  • Maddaloni E, Buzzetti R. Covid‐19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab Res Rev. 2020;e33213321. DOI:https://doi.org/10.1002/dmrr.3321
  • Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia–a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14(4):395–403.
  • Pickup J, Crook M. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241–1248.
  • Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit. 2006;12(7):RA130–RA47.
  • Buowari OY. Diabetes mellitus in developing countries and case series. Diabetes mellitus-Insights and Perspectives Rijeka, Croatia: InTechOpen. 2013:131.
  • Defronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 1997;5:177–266.
  • Rajaei E, Jalali MT, Shahrabi S, et al. HLAs in autoimmune diseases: dependable diagnostic biomarkers? Curr Rheumatol Rev. 2019;15(4):269–276.
  • Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complications. 2001;15(1):44–54.
  • Frade LG, De La Calle H, Alava I, et al. Diabetes mellitus as a hypercoagulable state: its relationship with fibrin fragments and vascular damage. Thromb Res. 1987;47(5):533–540.
  • Price LC, McCabe C, Garfield B, et al. Thrombosis and COVID-19 pneumonia: the clot thickens! Eur Respir Soc. 2020;56(1):2001608.
  • Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–1424.
  • Petrauskiene V, Falk M, Waernbaum I, et al. The risk of venous thromboembolism is markedly elevated in patients with diabetes. Diabetologia. 2005;48(5):1017–1021.
  • Piazza G, Goldhaber SZ, Kroll A, et al. Venous thromboembolism in patients with diabetes mellitus. Am J Med. 2012;125(7):709–716.
  • Tripathi S, Shree B, Mohapatra S, et al. The expanding regulatory mechanisms and cellular functions of long non-coding RNAs (lncRNAs) in neuroinflammation. Mol Neurobiol. 2021;1–24. DOI:https://doi.org/10.1007/s12035-020-02096-w
  • Fu X-J, Peng Y-B, Hu Y-P, et al. NADPH oxidase 1 and its derived reactive oxygen species mediated tissue injury and repair. Oxid Med Cell Longev. 2014;2014:1–10.
  • Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167.
  • Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species—Sources, functions, oxidative damage. Pol Merkur Lekarski. 2020;48(284):124–127.
  • Lassègue B, Sorescu D, Szöcs K, et al. Novel gp91 phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II–induced superoxide formation and redox-sensitive signaling pathways. Circ Res. 2001;88(9):888–894.
  • Craven PA, Phillips SL, Melhem MF, et al. Overexpression of manganese superoxide dismutase suppresses increases in collagen accumulation induced by culture of mesangial cells in high-media glucose. Metab Clin Exp. 2001;50(9):1043–1048.
  • Kim Y-S, Morgan MJ, Choksi S, et al. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell. 2007;26(5):675–687.
  • Weaver J, Taylor-Fishwick D. Regulation of NOX-1 expression in beta cells: a positive feedback loop involving the Src-kinase signaling pathway. Mol Cell Endocrinol. 2013;369(1–2):35–41.
  • Puzanowska-Tarasiewicz H, Starczewska B, Kuźmicka L. Reactive oxygen species. Bromatol Chem Toksykol. 2008;41(4):1007–1015.
  • Lushchak V. Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Moscow). 2007;72(8):809–827.
  • Cure E, Cumhur Cure M. COVID-19 may affect the endocrine pancreas by activating Na+/H+ exchanger 2 and increasing lactate levels. J Endocrinol Invest. 2020;43(8):1167–1168.
  • Wijnant SR, Jacobs M, Van Eeckhoutte HP, et al. Expression of ACE2, the SARS-CoV-2 receptor, in lung tissue of patients with type 2 diabetes. Diabetes. 2020;69(12):2691–2699.
  • Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–E7.
  • Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab. 2020;318(5):E736–E41.
  • Lee JM, Pilli S, Gebremariam A, et al. Getting heavier, younger: trajectories of obesity over the life course. Int J Obesity. 2010;34(4):614–623.
  • Lumeng CN. Innate immune activation in obesity. Mol Aspects Med. 2013;34(1):12–29.
  • Kang K, Reilly SM, Karabacak V, et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7(6):485–495.
  • Cure E, Cure MC. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndr. 2020;14(4):405–406.
  • Payán-Pernía S, Gómez Pérez L, Remacha Sevilla ÁF, et al. Absolute lymphocytes, ferritin, C-reactive protein, and lactate dehydrogenase predict early invasive ventilation in patients with COVID-19. Lab Med. 2021;52(2):141–145.
  • Han Y, Zhang H, Mu S, et al. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging (Albany NY). 2020;12(12):11245.
  • Henry BM, Aggarwal G, Wong J, et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: a pooled analysis. Am J Emerg Med. 2020;38(9):1722–1726.
  • Benucci M, Giannasi G, Cecchini P, et al. COVID‐19 pneumonia treated with sarilumab: a clinical series of eight patients. J Med Virol. 2020;92(11):2368–2370.
  • Albu JB, Lu J, Mooradian AD, et al. Relationships of obesity and fat distribution with atherothrombotic risk factors: baseline results from the bypass angioplasty revascularization investigation 2 diabetes (Bari 2D) trial. Obesity. 2010;18(5):1046–1054.
  • O’rourke R, Metcalf M, White A, et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int J Obesity. 2009;33(9):978–990.
  • Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol. 2010;11(3):197–206.
  • Lopez L, Sang PC, Tian Y, et al. Dysregulated interferon response underlying severe COVID-19. Viruses. 2020;12(12):1433.
  • Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397–398.
  • Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713–R5.
  • Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535.
  • Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on the neutrophil-to-lymphocyte ratio and IgG level predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci. 2020;7:157.
  • Hodgson K, Morris J, Bridson T, et al. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology. 2015;144(2):171–185.
  • Stentz FB, Kitabchi AE. Activated T lymphocytes in type 2 diabetes: implications from in vitro studies. Curr Drug Targets. 2003;4(6):493–503.
  • McLaughlin T, Liu L-F, Lamendola C, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34(12):2637–2643.
  • Zhou T, Hu Z, Yang S, et al. Role of adaptive and innate immunity in type 2 diabetes mellitus. J Diabetes Res. 2018;2018:1–9.
  • Zhang Q, Fang W, and Ma L, et al. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes: a cohort study. Medicine (Baltimore). 2018;97(15):e0415 .
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.
  • Cao Y, Zhang F, Hao F. Th1/Th2 cytokine expression in diabetic retinopathy. Genet Mol Res. 2016;15(3):15.
  • Yuan N, Zhang H-F, Wei Q, et al. Expression of CD4+ CD25+ Foxp3+ regulatory T cells, interleukin 10 and transforming growth factor β in newly diagnosed type 2 diabetic patients. Exp Clin Endocrinol Diabetes. 2018;126(2):96–101.
  • Srenathan U, Steel K, Taams LS. IL-17+ CD8+ T cells: differentiation, phenotype and role in inflammatory disease. Immunol Lett. 2016;178:20–26.
  • Berrou J, Fougeray S, Venot M, et al. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PloS One. 2013;8(4):e62418.
  • Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28(3):321–326.
  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229.
  • Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219–1222.
  • Bjarnsholt T, Kirketerp‐Møller K, Jensen PØ, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regener. 2008;16(1):2–10.
  • Hirsch T, Spielmann M, Zuhaili B, et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg. 2008;8(1):1–8.
  • Frykberg RG. An evidence-based approach to diabetic foot infections. Am J Surg. 2003;186(5):44–54.
  • Lavery LA, Armstrong DG, Wunderlich RP, et al. Risk factors for foot infections in individuals with diabetes. Diabetes Care. 2006;29(6):1288–1293.
  • Pal R, Bhadada SK. COVID-19 and diabetes mellitus: an unholy interaction of two pandemics. Diabetes Metab Syndr. 2020;14(4):513–517.
  • Rastad H, Parsaeian M, Shirzad N, et al. Diabetes mellitus and cancer incidence: the Atherosclerosis Risk in Communities (ARIC) cohort study. J Diabetes Metab Disord. 2019;18(1):65–72.
  • Leng Y, Chen M, and Dai M, et al. Minimize glycemic fluctuation decrease the risk of severe illness and death in patients with COVID‐19. J Med Virol. 2021;93(7):4060-4062 .
  • Zhou H, Jin Q, Lu H. Exposure risk of patients with chronic infectious wounds during the COVID-19 outbreak and its countermeasures. J Orthop Surg Res. 2020;15(1):1–10.
  • Maddaloni E, D’Onofrio L, Alessandri F, et al. Cardiometabolic multimorbidity is associated with a worse Covid-19 prognosis than individual cardiometabolic risk factors: a multicentre retrospective study (CoViDiab II). Cardiovasc Diabetol. 2020;19(1):1–11.
  • Tavakolpour S, Rakhshandehroo T, Wei EX, et al. Lymphopenia during the COVID-19 infection: what it shows and what can be learned. Immunol Lett. 2020;225:31.
  • Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–847.
  • Wang J, and Meng W. COVID-19 and diabetes: the contributions of hyperglycemia. J Mol Cell Biol. 2020;12(12):958-962 .
  • Haybar H, Shahrabi S, Rezaeeyan H, et al. Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc Toxicol. 2019;19(1):13–22.
  • Haybar H, Shokuhian M, Bagheri M, et al. Involvement of circulating inflammatory factors in prognosis and risk of cardiovascular disease. J Mol Cell Cardiol. 2019;132:110–119.
  • Singh AK, Gupta R, and Ghosh A, et al. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303-310 .
  • Dai M, Liu D, Liu M, et al. Patients with cancer appear more vulnerable to SARS-COV-2: a multicenter study during the COVID-19 outbreak. Cancer Discov. 2020;10(6):783–791.
  • Mehta V, Goel S, Kabarriti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system. Cancer Discov. 2020;10(7):935–941.
  • Huertas A, Perros F, Tu L, et al. Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension: a complex interplay. Circulation. 2014;129(12):1332–1340.
  • Dorfmüller P, and Humbert M. Progress in pulmonary arterial hypertension pathology: relighting a torch inside the tunnel. Am Thorac Soc. 2012;186(3):210-212 .
  • Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, et al. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res. 2020;290:198197.
  • Blot M, Bour J-B, Quenot JP, et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. J Transl Med. 2020;18(1):1–14.
  • Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract. 2020;162:108132.
  • Hartmann-Boyce J, Morris E, Goyder C, et al. Diabetes and COVID-19: risks, management, and learnings from other national disasters. Diabetes Care. 2020;43(8):1695–1703.
  • Lander HM, Tauras JM, Ogiste JS, et al. Activation of the receptor for advanced glycation end products triggers a p21 ras-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem. 1997;272(28):17810–17814.
  • Yeh C-H, Sturgis L, Haidacher J, et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-κB transcriptional activation and cytokine secretion. Diabetes. 2001;50(6):1495–1504.
  • Kislinger T, Fu C, Huber B, et al. N ε-(carboxymethyl) lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem. 1999;274(44):31740–31749.
  • Hasegawa T, Kosaki A, Kimura T, et al. The regulation of EN-RAGE (S100A12) gene expression in human THP-1 macrophages. Atherosclerosis. 2003;171(2):211–218.
  • Steenblock C, Richter S, Berger I, et al. Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun. 2021;12(1):3534.
  • Reiterer M, Rajan M, Gómez-Banoy N, et al. Hyperglycemia in acute COVID-19 is characterized by adipose tissue dysfunction and insulin resistance. medRxiv. 2021. DOI:https://doi.org/10.1101/2021.03.21.21254072.
  • Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149–165.
  • Kusmartseva I, Wu W, Syed F, et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab. 2020;32(6):1041–51.e6.
  • Allard R, Leclerc P, Tremblay C, et al. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care. 2010;33(7):1491–1493.
  • Olsson AG. Non-atherosclerotic disease and lipoproteins. Curr Opin Lipidol. 1991;2(3):206–210.
  • Lin Y, Lee H, Berg AH, et al. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem. 2000;275(32):24255–24263.
  • Kassir R. Risk of COVID‐19 for patients with obesity. Obesity Rev. 2020;21(6). DOI:https://doi.org/10.1111/obr.13034
  • Salgueiro MJ, Krebs N, Zubillaga MB, et al. Zinc and diabetes mellitus is there a need of Zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res. 2001;81(3):215–228.
  • Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: perspectives for COVID‑19. Int J Mol Med. 2020;46(1):17–26.
  • Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30.
  • Fernandez C, Rysä J, Almgren P, et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284(4):377–387.
  • Wu C, Zheng M, Yang Y, et al. Furin: a potential therapeutic target for COVID-19. Iscience. 2020;23(10):101642.
  • Bornstein SR, Dalan R, Hopkins D, et al. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297–298.
  • Simões E Silva A, Silveira K, Ferreira A, et al. ACE2, angiotensin‐(1‐7) and M as receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–492.
  • Couselo-Seijas M, Almengló C, Ma-b R, et al. Higher ACE2 expression levels in epicardial cells than subcutaneous stromal cells from patients with cardiovascular disease: diabetes and obesity as possible enhancer. Eur J Clin Invest. 2021;51(5):e13463.
  • Smati S, Tramunt B, Wargny M, et al. Relationship between obesity and severe COVID-19 outcomes in patients with type 2 diabetes: results from the CORONADO study. Diabetes Obes Metab. 2021;23(2):391–403.
  • Phan F, Boussouar S, Lucidarme O, et al. Cardiac adipose tissue volume and IL-6 level at admission are complementary predictors of severity and short-term mortality in COVID-19 diabetic patients. Cardiovasc Diabetol. 2021;20(1):165.
  • Bihan H, Heidar R, Beloeuvre A, et al. Epicardial adipose tissue and severe Coronavirus disease 19. Cardiovasc Diabetol. 2021;20(1):147.
  • Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622–630.
  • Liu F, Long X, Zhang B, et al. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18(9):2128.
  • Yang J-K, Lin -S-S, Ji X-J, et al. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–199.
  • Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027–1031.
  • Jaeckel E, Manns M, Von Herrath M. Viruses and diabetes. Ann N Y Acad Sci. 2002;958(1):7–25.
  • Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009;302(2):193–202.
  • Batlle D, Soler MJ, Ye M. ACE2 and diabetes: ACE of ACEs? Diabetes. 2010;59(12):2994–2996.
  • García-Ayllón MS, Moreno-Pérez O, García-Arriaza J, et al. Plasma ACE2 species are differentially altered in COVID-19 patients. Faseb J. 2021;35(8):e21745.
  • Zhu Z, Cai T, Fan L, et al. The potential role of serum angiotensin-converting enzyme in coronavirus disease 2019. BMC Infect Dis. 2020;20(1):883.
  • Avanoglu Guler A, Tombul N, Aysert Yıldız P, et al. The assessment of serum ACE activity in COVID-19 and its association with clinical features and severity of the disease. Scand J Clin Lab Invest. 2021;81(2):160–165.
  • Vassiliou AG, Zacharis A, Keskinidou C, et al. Soluble Angiotensin Converting Enzyme 2 (ACE2) is upregulated and soluble endothelial Nitric Oxide Synthase (eNOS) Is Downregulated in COVID-19-induced Acute Respiratory Distress Syndrome (ARDS). Pharmaceuticals (Basel). 2021;14(7):695.
  • Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905–919.
  • Herman-Edelstein M, Guetta T, Barnea A, et al. Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovasc Diabetol. 2021;20(1):90.
  • Wei C, Wan L, and Yan Q, et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020;2(12):1391-1400.
  • Osgood D, Corella D, Demissie S, et al. Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the framingham study. J Clin Endocrinol Metab. 2003;88(6):2869–2879.
  • Sampson MJ, Davies IR, Braschi S, et al. Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis. 2003;167(1):129–134.
  • Biamonte E, Pegoraro F, Carrone F, et al. Weight change and glycemic control in type 2 diabetes patients during COVID-19 pandemic: the lockdown effect. Endocrine. 2021;72(3):604–610.
  • Biancalana E, Parolini F, Mengozzi A, et al. Short-term impact of COVID-19 lockdown on metabolic control of patients with well-controlled type 2 diabetes: a single-centre observational study. Acta Diabetol. 2021;58(4):431–436.
  • Karatas S, Yesim T, Beysel S. Impact of lockdown COVID-19 on metabolic control in type 2 diabetes mellitus and healthy people. Prim Care Diabetes. 2021;15(3):424–427.
  • Tornese G, Ceconi V, Monasta L, et al. Glycemic control in type 1 diabetes mellitus during COVID-19 quarantine and the role of in-home physical activity. Diabetes Technol Ther. 2020;22(6):462–467.
  • Bonora BM, Boscari F, Avogaro A, et al. Glycaemic control among people with type 1 diabetes during lockdown for the SARS-CoV-2 outbreak in Italy. Diabetes Ther. 2020;11(6):1–11.
  • Zhu L, She Z-G, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–1077.e3.
  • Gianchandani R, Esfandiari NH, Ang L, et al. Managing hyperglycemia in the COVID-19 inflammatory storm. Diabetes. 2020;69(10):2048–2053.
  • Di Filippo L, Allora A, Doga M, et al. Vitamin D levels associate with blood glucose and BMI in COVID-19 patients predicting disease severity. J Clin Endocrinol Metab. 2021. DOI:https://doi.org/10.1210/clinem/dgab599.
  • Seyedian SM, Soltani F, Saki N, et al. Effect of Von Willebrand antigen on mortality and major adverse cardiac events in diabetic and non-diabetic patients with anterior ST elevated myocardial infarction. Jundishapur J Chron Dis Care. 2020;9(1). DOI:https://doi.org/10.5812/jjcdc.98882
  • Liu W, and Li H. COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. Cambridge: Cambridge Open Engage. 2020.
  • Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic. J Med Virol. 2020;92(7):770–775.
  • Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis dependent axis. 2020.
  • Lubrano C, Masi D, Risi R, et al. Is growth hormone insufficiency the missing link between obesity, male gender, age, and COVID‐19 severity? Obesity. 2020;28(11):2038–2039.
  • Tan T, Khoo B, Mills EG, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020;8(8):659–660.
  • Green I, Merzon E, Vinker S, et al. COVID-19 susceptibility in bronchial asthma. J Allergy Clin Immunol. 2020;9(2):684–692.e1.
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21.
  • Yang P, Gu H, Zhao Z, et al. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep. 2014;4:7027.
  • Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology. 2015;156(10):3559–3569.
  • Grossman LD, Roscoe R, Shack AR. Complementary and alternative medicine for diabetes. Can J Diabetes. 2018;42:S154–S61.
  • Koszegi S, Molnar A, Lenart L, et al. RAAS inhibitors directly reduce diabetes‐induced renal fibrosis via growth factor inhibition. J Physiol. 2019;597(1):193–209.
  • Tamura RE, Said SM, de Freitas LM, et al. Outcome and death risk of diabetes patients with Covid-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab Syndr. 2021;13(1):76.
  • Li Y, Yang X, Yan P, et al. Metformin in patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2021;8:704666.
  • Xian H, Liu Y, Rundberg Nilsson A, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 2021;54(7):1463–77.e11.
  • Emral R, Haymana C, Demirci I, et al. Lower COVID-19 mortality in patients with type 2 diabetes mellitus taking dipeptidyl peptidase-4 inhibitors: results from a turkish nationwide study. Diabetes Ther. 2021;1–14 DOI:https://doi.org/10.1007/s13300-020-00961-4
  • Solerte SB, D’Addio F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care. 2020;43(12):2999–3006.
  • Liu Y, Xie H, Gao H, et al. Efficacy and safety of DPP-4 inhibitor in the treatment of patients with COVID-19 combined with diabetes mellitus: a protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020;99(41):e22592.
  • Yu B, Li C, Sun Y, et al. Insulin treatment is associated with increased mortality in patients with COVID-19 and type 2 diabetes. Cell Metab. 2021;33(1):65–77.e2.
  • Hariyanto TI, Lugito NPH, Yanto TA, et al. Insulin therapy and outcome from coronavirus disease 2019 (COVID-19): a systematic review, meta-analysis, and meta-regression. Endocr Metab Immune Disord Drug Targets. 2021;21. DOI:https://doi.org/10.2174/1871530321666210709164925
  • Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020;43(7):1399–1407.
  • Pérez-Belmonte LM, Torres-Peña JD, López-Carmona MD, et al. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study. BMC Med. 2020;18(1):359.
  • Saeed O, Castagna F, Agalliu I, et al. Statin use and in-hospital mortality in patients with diabetes mellitus and COVID-19. J Am Heart Assoc. 2020;9(24):e018475.
  • Song SL, Hays SB, Panton CE, et al. Statin use is associated with decreased risk of invasive mechanical ventilation in COVID-19 patients: a preliminary study. Pathogens. 2020;9(9):759.
  • Zhang XJ, Qin JJ, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020;32(2):176–87.e4.
  • Rodriguez-Nava G, Trelles-Garcia DP, Yanez-Bello MA, et al. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study. Crit Care. 2020;24(1):429.
  • De Spiegeleer A, Bronselaer A, Teo JT, et al. The effects of ARBs, ACEis, and statins on clinical outcomes of COVID-19 infection among nursing home residents. J Am Med Dir Assoc. 2020;21(7):909–14.e2.
  • Rubino F, Amiel SA, Zimmet P, et al. New-onset diabetes in Covid-19. N Engl J Med. 2020;383(8):789–790.
  • Sathish T, Tapp RJ, Cooper ME, et al. Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab. 2021;47(2):101204.
  • Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546–550.
  • Sathish T, Cao Y, Kapoor N. Newly diagnosed diabetes in COVID-19 patients. Prim Care Diabetes. 2021;15(1):194.
  • Sathish T, Kapoor N, Cao Y, et al. Proportion of newly diagnosed diabetes in COVID-19 patients: a systematic review and meta-analysis. Diabetes Obes Metab. 2021;23(3):870–874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.