822
Views
0
CrossRef citations to date
0
Altmetric
Review

In-vitro assays for immuno-oncology drug efficacy assessment and screening for personalized cancer therapy: scopes and challenges

ORCID Icon, , , , &
Received 30 Nov 2023, Accepted 26 Mar 2024, Published online: 03 Apr 2024

References

  • Esfahani K, Roudaia L, Buhlaiga N, et al. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol [Internet]. 2020. [cited 2023 Nov 3];27(12):S87–97. Available from: /pmc/articles/PMC7194005/. doi: 10.3747/co.27.5223
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov [Internet]. 2022 [cited 2022 Jan 30];12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059.
  • Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer [Internet]. 2021 [cited 2023 May 16];9(6):e002435. doi: 10.1136/jitc-2021-002435
  • Shields MD, Marin-Acevedo JA, Pellini B. Immunotherapy for advanced non–small cell lung cancer: a decade of progress. Am Soc Clin Oncol Educ Book [Internet]. 2021 [cited 2023 Nov 9];41(41):e105–e127. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33979196. doi: 10.1200/EDBK_321483
  • Thapa B, Roopkumar J, Kim AS, et al. Incidence and clinical pattern of immune related adverse effects (irAE) due to immune checkpoint inhibitors (ICI). 2019;37:e14151–e14151.
  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J Clin Oncol. 2022;40(2):127–137. doi: 10.1200/JCO.21.02229
  • Arnaud-Coffin P, Maillet D, Gan HK, et al. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int J Cancer [Internet]. 2019 [cited 2023 May 16];145(3):639–648. doi: 10.1002/ijc.32132
  • Horn LA, Fousek K, Palena C. Tumor plasticity and resistance to immunotherapy. Trends Cancer [Internet]. 2020 [cited 2023 Nov 2];6(5):432. Available from: /pmc/articles/PMC7192950/. doi: 10.1016/j.trecan.2020.02.001
  • Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–723. doi: 10.1016/j.cell.2017.01.017
  • Sankar K, Ye JC, Li Z, et al. The role of biomarkers in personalized immunotherapy. Biomark Res [Internet]. 2022 [cited 2024 Feb 11];10(1):1–13. doi: 10.1186/s40364-022-00378-0
  • Meijer TG, Naipal KA, Jager A, et al. Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci OA [Internet]. 2017. cited 2022 Jan 22;3(2):FSO190. Available from: /pmc/articles/PMC5481868/. doi: 10.4155/fsoa-2017-0003
  • Mason J, D Ö. Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Front Bioeng Biotechnol. 2023;11:1150764. doi: 10.3389/fbioe.2023.1150764
  • Hickman JA, Graeser R, de Hoogt R, et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J [Internet]. 2014 [cited 2024 Feb 11];9(9):1115–1128. doi: 10.1002/biot.201300492
  • Du Y, Li X, Niu Q, et al. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J Mol Cell Biol [Internet] 2020 [cited 2024 Feb 11];12:630. Available from: /pmc/articles/PMC7751183/. doi: 10.1093/jmcb/mjaa036.
  • Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol [Internet]. 2003 [cited 2024 Feb 8];15(6):753. Available from: /pmc/articles/PMC2933200/. doi: 10.1016/j.ceb.2003.10.016
  • Meyers J, Craig J, Odde DJJ. Potential for control of signaling pathways via cell size and shape. Curr Biol [Internet]. 2006 [cited 2024 Feb 8]. 16(17):1685–1693. doi: 10.1016/j.cub.2006.07.056.
  • Mseka T, Bamburg JR, Cramer LP. Adf/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J Cell Sci [Internet]. 2007 [cited 2024 Feb 8]. 120(24):4332–4344. doi: 10.1242/jcs.017640.
  • Debnath J, Brugge JS. Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer [Internet]. 2005 [cited 2024 Feb 8]. 5(9):675–688. doi: 10.1038/nrc1695.
  • Mahmud G, Campbell CJ, Bishop KJM, et al. Directing cell motions on micropatterned ratchets. Nat Phys [Internet]. 2009. cited 2024 Feb 8;5(8):606–612. Available from: https://www.nature.com/articles/nphys1306. doi: 10.1038/nphys1306
  • Melissaridou S, Wiechec E, Magan M, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int [Internet]. 2019 [cited 2024 Feb 8];19(1):1–10. doi: 10.1186/s12935-019-0733-1
  • Zschenker O, Streichert T, Hehlgans S, et al. Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS One [Internet]. 2012 [cited 2024 Feb 8];7(4):e34279. doi: 10.1371/journal.pone.0034279
  • Krysko DV, Demuynck R, Efimova I, et al. In vitro veritas: from 2D cultures to organ-on-a-chip models to study immunogenic cell death in the tumor microenvironment. Cells [Internet]. 2022. cited 2024 Feb 11;11(22):3705. Available from: https://www.mdpi.com/2073-4409/11/22/3705/htm. doi: 10.3390/cells11223705
  • Stock K, Estrada MF, Vidic S, et al. Capturing tumor complexity in vitro: comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep [Internet]. 2016 [cited 2024 Feb 11];6(1). Available from: /pmc/articles/PMC4929472/. doi: 10.1038/srep28951
  • Mo X, Tang C, Niu Q, et al. HTiP: high-throughput immunomodulator phenotypic screening platform to reveal IAP antagonists as anti-cancer immune enhancers. Cell Chem Biol. 2019;26(3):331–339.e3. doi: 10.1016/j.chembiol.2018.11.011
  • Mackenzie NJ, Nicholls C, Templeton AR, et al. Modelling the tumor immune microenvironment for precision immunotherapy. Clin Transl Immunology [Internet]. 2022 [cited 2024 Feb 11];11(6):e1400. doi: 10.1002/cti2.1400
  • Olivo Pimentel V, Yaromina A, Marcus D, et al. A novel co-culture assay to assess anti-tumor CD8+ T cell cytotoxicity via luminescence and multicolor flow cytometry. J Immunol Methods. 2020;487:112899. doi: 10.1016/j.jim.2020.112899
  • Rodrigues J, Heinrich MA, Teixeira LM, et al. 3D in vitro model (R)evolution: unveiling tumor–stroma interactions. Trends Cancer. 2021;7(3):249–264. doi: 10.1016/j.trecan.2020.10.009
  • Campuzano S, Pelling AE. Scaffolds for 3D cell culture and cellular agriculture applications derived from non-animal sources. Front Sustain Food Syst. 2019;3:38. doi: 10.3389/fsufs.2019.00038
  • Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17(1):1–15. doi: 10.1016/j.neo.2014.12.004
  • Mäkelä R, Arjonen A, Härmä V, et al. Ex vivo modelling of drug efficacy in a rare metastatic urachal carcinoma. BMC Cancer [Internet] 2020 [cited 2021 Oct 3];20:1–10. Available from: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-020-07092-w. doi: 10.1186/s12885-020-07092-w.
  • Mönch D, Koch J, Maaß A, et al. A human ex vivo coculture model to investigate peritoneal metastasis and innovative treatment options. Pleura Peritoneum. 2021;6(3):121–129. doi: 10.1515/pp-2021-0128
  • Tan SQ, Lee Y, Lee FYX, et al. Ex vivo co-culture models for immunotherapy with patient-derived tumor infiltrating lymphocytes, peripheral blood mononuclear cells and autologous patient colorectal cancer (CRC) cell lines. J Clin Oncol. 2018;36(15_suppl):e15531–e15531. doi: 10.1200/JCO.2018.36.15_suppl.e15531
  • Gong X, Lin C, Cheng J, et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS One [Internet]. 2015 [cited 2023 Jun 18];10(6):e0130348. doi: 10.1371/journal.pone.0130348
  • Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci [Internet]. 2000 [cited 2023 Jun 18];97:p. 14720–14725. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.97.26.14720.
  • Kondo J, Endo H, Okuyama H, et al. Retaining cell–cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci U S A [Internet]. 2011. cited 2023 Jun 18;108(15):6235–6240. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1015938108. doi: 10.1073/pnas.1015938108
  • Burgués JP, Gómez L, Pontones JL, et al. A chemosensitivity test for superficial bladder cancer based on three-dimensional culture of tumour spheroids. Eur Urol. 2007;51(4):962–970. doi: 10.1016/j.eururo.2006.10.034
  • Powley IR, Patel M, Miles G, et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer [Internet]. 2020. cited 2023 Jun 18;122(6):735–744. Available from: https://www.nature.com/articles/s41416-019-0672-6. doi: 10.1038/s41416-019-0672-6
  • Datta P, Dey M, Ataie Z, et al. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol. 2020;4(1):4. doi: 10.1038/s41698-020-0121-2
  • Ruppen J, Wildhaber FD, Strub C, et al. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip [Internet]. 2015 [cited 2023 Oct 11];15(14):3076–3085. doi: 10.1039/C5LC00454C
  • Herter S, Morra L, Schlenker R, et al. A novel three-dimensional heterotypic spheroid model for the assessment of the activity of cancer immunotherapy agents. Cancer Immunol Immunother [Internet]. 2017 [cited 2023 Nov 28];66(1):129–140. doi: 10.1007/s00262-016-1927-1
  • Tong JG, Valdes YR, Barrett JW, et al. Evidence for differential viral oncolytic efficacy in an in vitro model of epithelial ovarian cancer metastasis. Mol Ther Oncolytics. 2015;2:15013. doi: 10.1038/mto.2015.13
  • Mukherjee M, Chepizhko O, Chiara Lionetti M, et al. Infiltration of tumor spheroids by activated immune cells. Phys Biol [Internet]. 2023. cited 2023 Nov 28;20(5):056001. Available from: https://iopscience.iop.org/article/10.1088/1478-3975/ace0ee. doi: 10.1088/1478-3975/ace0ee
  • He W, Kuang Y, Xing X, et al. Proteomic comparison of 3D and 2D glioma models reveals increased HLA-E expression in 3D models is associated with resistance to NK cell-mediated cytotoxicity. J Proteome Res [Internet]. 2014 [cited 2023 Nov 28];13(5):2272–2281. doi: 10.1021/pr500064m
  • Courau T, Bonnereau J, Chicoteau J, et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer [Internet]. 2019 [cited 2023 Jul 28];7(1):1–14. doi: 10.1186/s40425-019-0553-9
  • Ou L, Liu S, Wang H, et al. Patient-derived melanoma organoid models facilitate the assessment of immunotherapies. EBioMedicine [Internet]. 2023 [cited 2023 Nov 3];92:104614. Available from: http://www.thelancet.com/article/S2352396423001792/fulltext doi: 10.1016/j.ebiom.2023.104614.
  • Wallstabe L, Göttlich C, Nelke LC, et al. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight [Internet]. 2019 [cited 2023 Nov 3];4(18). doi: 10.1172/jci.insight.126345
  • Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972–1988.e16. doi: 10.1016/j.cell.2018.11.021.
  • Mu H-Y, Lin C-M, Chu L-A, et al. Ex vivo evaluation of combination immunotherapy using tumor-microenvironment-on-chip. Adv Healthc Mater [Internet]. 2023 cited 2023 Nov 3;2302268. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.202302268
  • Alexander Heinrich M, Bansal R, Lammers T, et al. 3D-Bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv Mater [Internet]. 2019 [cited 2024 Feb 12];31(14):1806590. doi: 10.1002/adma.201806590
  • Maritan SM, Lian EY, Mulligan LM. An efficient and flexible cell aggregation method for 3d spheroid production. J Visualized Exp [Internet]. 2017 cited 2023 Nov 2;2017(121). doi: 10.3791/55544.
  • Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int [Internet]. 2021 [cited 2023 Jun 19];21(1):1–19. Available from: https://cancerci.biomedcentral.com/articles/10.1186/s12935-021-01853-8. doi: 10.1186/s12935-021-01853-8
  • Barbosa MAG, Xavier CPR, Pereira RF, et al. 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs. Cancers (Basel) [Internet]. 2021 [cited 2023 Jun 19];14(1):190. Available from: http://pmc/articles/PMC8749977/
  • Weiswald LB, Richon S, Validire P, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer [Internet]. 2009. cited 2024 Feb 12;101(3):473. Available from: /pmc/articles/PMC2720229/. doi: 10.1038/sj.bjc.6605173
  • Voabil P, de Bruijn M, Roelofsen LM, et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat Med [Internet]. 2021. cited 2024 Feb 12;27(7):1250–1261. Available from: https://www.nature.com/articles/s41591-021-01398-3. doi: 10.1038/s41591-021-01398-3
  • Mu P, Zhou S, Lv T, et al. Newly developed 3D in vitro models to study tumor–immune interaction. J Exp Clin Cancer Res [Internet]. 2023 [cited 2024 Feb 12];42(1):1–16. doi: 10.1186/s13046-023-02653-w
  • Demers I, Donkers J, Kremer B, et al. Ex vivo culture models to indicate therapy response in head and neck squamous cell carcinoma. Cells [Internet]. 2020. cited 2022 Jan 31;9(11):2527. Available from: /pmc/articles/PMC7700693/. doi: 10.3390/cells9112527
  • Subia B, Dahiya UR, Mishra S, et al. Breast tumor-on-chip models: from disease modeling to personalized drug screening. J Controlled Release. 2021;331:103–120. doi: 10.1016/j.jconrel.2020.12.057
  • Phung YT, Barbone D, Broaddus VC, et al. Rapid generation of in vitro multicellular spheroids for the study of monoclonal antibody therapy. J Cancer [Internet]. 2011 [cited 2023 May 16];2:507–514. doi: 10.7150/jca.2.507
  • Huang YL, Ma Y, Wu C, et al. Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion. Sci Rep [Internet]. 2020. cited 2023 May 16;10(1):1–11. Available from: https://www.nature.com/articles/s41598-020-66528-2. doi: 10.1038/s41598-020-66528-2
  • Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci [Internet]. 2018 [cited 2024 Feb 12];14: 910. Available from: http://pmc/articles/PMC6040128/.
  • Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5–6):240–249. doi: 10.1016/j.drudis.2012.10.003
  • Benien P, Swami A. 3D tumor models: history, advances and future perspectives. Future Oncol [Internet]. 2014 [cited 2023 Jun 17];10(7):1311–1327. Available from: https://www.futuremedicine.com/doi/10.2217/fon.13.274
  • Marques IA, Fernandes C, Tavares NT, et al. Magnetic-based human tissue 3D cell culture: a systematic review. IJMS [Internet]. 2022. cited 2024 Feb 13;23(20):12681. Available from: https://www.mdpi.com/1422-0067/23/20/12681/htm. doi: 10.3390/ijms232012681
  • Ferreira JN, Hasan R, Urkasemsin G, et al. A magnetic three-dimensional levitated primary cell culture system for the development of secretory salivary gland-like organoids. J Tissue Eng Regen Med [Internet]. 2019 [cited 2024 Feb 13];13(3):495–508. doi: 10.1002/term.2809
  • Chan WS, Mo X, Ip PPC, et al. Patient-derived organoid culture in epithelial ovarian cancers—techniques, applications, and future perspectives. Cancer Med [Internet]. 2023 [cited 2024 Feb 13];12(19):19714–19731. doi: 10.1002/cam4.6521
  • Wang Y, Shi W, Kuss M, et al. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng [Internet]. 2018. cited 2024 Feb 13;4(12):4401–4411. Available from: https://pubs.acs.org/doi/full/10.1021/acsbiomaterials.8b01277. doi: 10.1021/acsbiomaterials.8b01277
  • Yadav B, Pemovska T, Szwajda A, et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci Rep [Internet]. 2014. cited 2023 Nov 28;4(1):1–10. Available from: https://www.nature.com/articles/srep05193. doi: 10.1038/srep05193
  • Thoma CR, Stroebel S, Rösch N, et al. A high-throughput–compatible 3D microtissue co-culture system for phenotypic RNAi screening applications. SLAS Discovery [Internet]. 2013. cited 2023 Jun 19;18(10):1330–1337. Available from: https://pubmed.ncbi.nlm.nih.gov/24080258/. doi: 10.1177/1087057113499071
  • Zanoni M, Piccinini F, Arienti C, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep [Internet]. 2016 [cited 2023 Jun 19];6(1). Available from: /pmc/articles/PMC4707510/. doi: 10.1038/srep19103
  • Särchen V, Shanmugalingam S, Kehr S, et al. Pediatric multicellular tumor spheroid models illustrate a therapeutic potential by combining BH3 mimetics with natural killer (NK) cell-based immunotherapy. Cell Death Discov [Internet]. 2022. cited 2023 Jun 19;8(1):1–10. Available from: https://www.nature.com/articles/s41420-021-00812-6. doi: 10.1038/s41420-021-00812-6
  • Wan C, Keany MP, Dong H, et al. Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res [Internet]. 2021. cited 2023 Jun 19;81(1):158. Available from: /pmc/articles/PMC7878408/. doi: 10.1158/0008-5472.CAN-20-1674
  • Meng Q, Xie S, Gray GK, et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. J Immunother Cancer. [Internet] 2021 [cited 2023 Jun 19];9(11):e003213. doi: 10.1136/jitc-2021-003213
  • Zhou S, Zhu M, Meng F, et al. Evaluation of PD-1 blockade using a multicellular tumor spheroid model. Am J Transl Res [Internet]. 2019 [cited 2023 Nov 16];11: 7471. Available from: http://pmc/articles/PMC6943460/.
  • Sirenko O, Mitlo T, Hesley J, et al. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol [Internet]. 2015. cited 2023 Nov 3;13(7):402. Available from: /pmc/articles/PMC4556086/. doi: 10.1089/adt.2015.655
  • Kast V, Nadernezhad A, Pette D, et al. A tumor microenvironment model of pancreatic cancer to elucidate responses toward immunotherapy. Adv Healthc Mater [Internet] 2023. cited 2023 Jul 28;12(14):2201907. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.202201907. doi: 10.1002/adhm.202201907
  • Booij TH, Price LS, Danen EHJ. 3D cell-based assays for drug screens: challenges in imaging, image analysis, and high-content analysis. SLAS DISCOVERY [Internet]. 2019 [cited 2023 Nov 3];24(6):615–627. doi: 10.1177/2472555219830087.
  • Rolver MG, Elingaard-Larsen LO, Pedersen SF. Assessing cell viability and death in 3d spheroid cultures of cancer cells. J Visualized Exp. 2019;2019(148). doi: 10.3791/59714.
  • Edwards SJ, Carannante V, Kuhnigk K, et al. High-resolution imaging of tumor spheroids and organoids enabled by expansion microscopy. Front Mol Biosci. 2020;7:567282. doi: 10.3389/fmolb.2020.00208
  • Diosdi A, Hirling D, Kovacs M, et al. Cell lines and clearing approaches: a single-cell level 3D light-sheet fluorescence microscopy dataset of multicellular spheroids. Data Brief. 2021;36:107090. doi: 10.1016/j.dib.2021.107090
  • Saraiva DP, Matias AT, Braga S, et al. Establishment of a 3D co-culture with MDA-MB-231 breast cancer cell line and patient-derived immune cells for application in the development of immunotherapies. Front Oncol. 2020;10:561826. doi: 10.3389/fonc.2020.01543
  • Zhang Z, Wang G, Zhong K, et al. A drug screening to identify novel combinatorial strategies for boosting cancer immunotherapy efficacy. J Transl Med [Internet]. 2023 [cited 2023 Apr 5];21(1):1–20. doi: 10.1186/s12967-023-03875-4
  • Ruppen J, Cortes-Dericks L, Marconi E, et al. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip [Internet]. 2014 [cited 2023 Jun 19];14(6):1198–1205. doi: 10.1039/C3LC51093J
  • Li C, Holman JB, Shi Z, et al. On-chip modeling of tumor evolution: advances, challenges and opportunities. Mater Today Bio. 2023;21:100724. doi: 10.1016/j.mtbio.2023.100724
  • Li NT, Co IL, Landon-Brace N, et al. Tissue-engineered 3D cancer microenvironment for screening therapeutics. In: Kundu SC, Reis RL, editors. Biomate 3D Tumor Model. Elsevier; 2020. p. 453–479. doi: 10.1016/B978-0-12-818128-7.00019-8
  • Meindl-Beinker NM, Betge J, Gutting T, et al. A multicenter open-label phase II trial to evaluate nivolumab and ipilimumab for 2nd line therapy in elderly patients with advanced esophageal squamous cell cancer (RAMONA). BMC Cancer [Internet]. 2019 [cited 2024 Feb 13];19(1). Available from: /pmc/articles/PMC6419339/. doi: 10.1186/s12885-019-5446-2
  • Snijder B, Vladimer GI, Krall N, et al. Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. 2017 [cited 2023 Nov 5]; Available from: http://www.thelancet.com/haematologyPublishedonline.
  • Kropivsek K, Kachel P, Goetze S, et al. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. Nat Cancer. 2023. cited 2023 Aug 2;4(5):734–753. Available from: https://www.nature.com/articles/s43018-023-00544-9. doi: 10.1038/s43018-023-00544-9
  • Smiraglia DJ, Rush LJ, Frühwald MC, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Human Molecular Genetics [Internet]. 2001. cited 2023 Nov 5;10(13):1413–1419. Available from: https://pubmed.ncbi.nlm.nih.gov/11440994/. doi: 10.1093/hmg/10.13.1413
  • Pan C, Kumar C, Bohl S, et al. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol & Cell Proteom [Internet]. 2009. cited 2023 Nov 5;8(3):443. Available from: /pmc/articles/PMC2649808/. doi: 10.1074/mcp.M800258-MCP200
  • Li YR, Yu Y, Kramer A, et al. An ex vivo 3D tumor microenvironment-mimicry culture to study TAM modulation of cancer immunotherapy. Cells [Internet]. 2022. cited 2023 Nov 5;11(9):1583. Available from: /pmc/articles/PMC9101510/. doi: 10.3390/cells11091583
  • Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515–528.e17. doi: 10.1016/j.cell.2018.03.017
  • Grassi L, Alfonsi R, Francescangeli F, et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis [Internet]. 2019. cited 2023 Nov 6;10(3):1–15. Available from: https://www.nature.com/articles/s41419-019-1453-0. doi: 10.1038/s41419-019-1453-0
  • Martini G, Belli V, Napolitano S, et al. Establishment of patient-derived tumor organoids to functionally inform treatment decisions in metastatic colorectal cancer. ESMO Open. 2023;8(3):101198. doi: 10.1016/j.esmoop.2023.101198
  • Subtil B, Iyer KK, Poel D, et al. Dendritic cell phenotype and function in a 3D co-culture model of patient-derived metastatic colorectal cancer organoids. Front Immunol. 2023;14:1105244. doi: 10.3389/fimmu.2023.1105244
  • Longati P, Jia X, Eimer J, et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer [Internet]. 2013 [cited 2023 Jun 18];13(1):1–13. doi: 10.1186/1471-2407-13-95
  • Ryu NE, Lee SH, Park H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells [Internet]. 2019 [cited 2023 Jun 18];8(12):1620. Available from: https://www.mdpi.com/2073-4409/8/12/1620/htm. doi: 10.3390/cells8121620
  • Białkowska K, Komorowski P, Bryszewska M, et al. Spheroids as a type of three-dimensional cell cultures—examples of methods of preparation and the most important application. Int J Mol Sci [Internet]. 2020. cited 2023 Jun 18;21(17):6225. Available from. https://www.mdpi.com/1422-0067/21/17/6225/htm. doi: 10.3390/ijms21176225
  • Wang T, Wang L, Wang G, et al. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. Bioresour Bioprocess [Internet]. 2020. cited 2023 Jun 17;7(1):1–34. Available from: https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-020-00325-7. doi: 10.1186/s40643-020-00325-7
  • Gunti S, Hoke ATK, Vu KP, et al. Organoid and spheroid tumor models: techniques and applications. Cancers (Basel) [Internet]. 2021. cited 2023 Jun 17;13(4):1–18. Available from: /pmc/articles/PMC7922036/. doi: 10.3390/cancers13040874
  • Unnikrishnan K, Thomas LV, Ram Kumar RM. Advancement of scaffold-based 3D cellular models in cancer tissue engineering: an update. Front Oncol [Internet]. 2021 [cited 2023 Jun 17];11.Available from: /pmc/articles/PMC8573168/. doi: 10.3389/fonc.2021.733652