88
Views
0
CrossRef citations to date
0
Altmetric
Perspective

How could our genetics impact COVID-19 vaccine response?

, &
Received 22 Dec 2023, Accepted 19 Apr 2024, Published online: 27 Apr 2024

References

  • Madden EA, Diamond MS. Host cell-intrinsic innate immune recognition of SARS-CoV-2. Curr Opin Virol. 2022;52:30–38. doi:10.1016/j.coviro.2021.11.002
  • Xu G, Yang Y, Du Y, et al. Clinical pathway for early diagnosis of COVID-19: updates from experience to evidence-based practice. Clin Rev Allerg Immunol. 2020;59(1):89–100. doi: 10.1007/s12016-020-08792-8
  • Merad M, Blish CA, Sallusto F, et al. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122–1127. doi:10.1126/science.abm8108
  • Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi:10.1001/jama.2020.12839
  • Abayomi A, Odukoya O, Osibogun A, et al. Presenting symptoms and predictors of poor outcomes among 2,184 patients with COVID-19 in Lagos State, Nigeria. Inter J Infect Dis. 2021;102:226–232. doi: 10.1016/j.ijid.2020.10.024
  • Desai AD, Lavelle M, Boursiquot BC, et al. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1–C11. doi:10.1152/ajpcell.00375.2021
  • An Y, Song S, Li W, et al. Liver function recovery of COVID-19 patients after discharge, a follow-up study. Int J Med Sci. 2021;18(1):176–186. doi: 10.7150/ijms.50691
  • Kang Y, Chen T, Mui D, et al. Cardiovascular manifestations and treatment considerations in COVID-19. Heart. 2020;106(15):1132–1141. doi: 10.1136/heartjnl-2020-317056
  • Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive care Med. 2020;46(6):1089–1098. doi: 10.1007/s00134-020-06062-x
  • Rubino F, Amiel SA, Zimmet P, et al. New-onset diabetes in covid-19. N Engl J Med. 2020;383(8):789–790. doi: 10.1056/NEJMc2018688
  • Ghiasi N, Valizadeh R, Arabsorkhi M, et al. Efficacy and side effects of Sputnik V, sinopharm and AstraZeneca vaccines to stop COVID-19; a review and discussion. Immunopathologia Persa. 2021;7(2):e31. doi: 10.34172/ipp.2021.31
  • Harcourt J, Tamin A, Lu X, et al. Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerg Infect Dis. 2020;26(6):1266–1273. doi: 10.3201/eid2606.200516
  • Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3
  • Brant AC, Tian W, Majerciak V, et al. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci. 2021;11(1):1–136. doi:10.1186/s13578-021-00643-z
  • Wang D, Jiang A, Feng J, et al. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Molecular Cell. 2021;81(10):2135–2147.e5. doi: 10.1016/j.molcel.2021.02.036
  • Kim D, Lee J, Yang J, et al. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;181(4):914–921.e10. doi:10.1016/j.cell.2020.04.011
  • Turakhia Y, Thornlow B, Hinrichs A, et al. Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. Nature. (London). 2022;609(7929):994–997. doi: 10.1038/s41586-022-05189-9
  • Ou J, Lan W, Wu X, et al. Tracking SARS-CoV-2 omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct Target Ther. 2022;7(1):138. doi: 10.1038/s41392-022-00992-2
  • Gong W, Parkkila S, Wu X, et al. SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies. Intern rev immunol. 2022;42(6):1–22. doi: 10.1080/08830185.2022.2079642
  • Alam MM, Hannan SB, Saikat TA, et al. Beta, delta, and omicron, deadliest among SARS-CoV-2 variants: a computational repurposing approach. Evol Bioinform Online. 2023;19:11769343231182258. doi: 10.1177/11769343231182258
  • Jia Z, Gong W. Will mutations in the spike protein of SARS-CoV-2 lead to the failure of COVID-19 vaccines? J Korean Med Sci. 2021;36(18):e124. doi:10.3346/jkms.2021.36.e124
  • Perchetti GA, Zhu H, Mills MG, et al. Specific allelic discrimination of N501Y and other SARS‐CoV‐2 mutations by ddPCR detects B.1.1.7 lineage in Washington State. J med virol. 2021;93(10):5931–5941. doi: 10.1002/jmv.27155
  • Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592:438–443. doi: 10.1038/s41586-021-03402-9
  • Lee WL, Gu X, Armas F, et al. Quantitative SARS-CoV-2 tracking of variants delta, delta plus, kappa and beta in wastewater by allele-specific RT-qPCR. MedRxiv. 2021:204. doi: 10.1101/2021.08.03.21261298
  • Qin S, Cui M, Sun S, et al. Genome characterization and potential risk assessment of the novel SARS-CoV-2 variant omicron (B.1.1.529). Zoonoses (Burlington, Mass). 2021;1(1):5. doi: 10.15212/ZOONOSES-2021-0024
  • Zhang Q, Xiang R, Huo S, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):233. doi: 10.1038/s41392-021-00653-w
  • Okhotin A, Chi H, Chiu N, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine. N Engl J Med. 2021;385(14):1336–1339.
  • Voysey M, Weckx LY, Collins AM, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111. doi: 10.1016/S0140-6736(20)32661-1
  • Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N Engl J Med. 2021;384(23):2187–2201. doi: 10.1056/NEJMoa2101544
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi: 10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi: 10.1056/NEJMoa2035389
  • Khobragade A, Bhate S, Ramaiah V, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet. 2022;399(10332):1313–1321. doi: 10.1016/S0140-6736(22)00151-9
  • Weidenbacher PA, Sanyal M, Friedland N, et al. A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nat Commun. 2023;14(1):2149. doi: 10.1038/s41467-023-37417-9
  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100. doi:10.1038/s41577-020-00479-7
  • Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82. doi:10.1038/s41577-020-00480-0
  • Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1885–1898. doi: 10.1056/NEJMoa2102214
  • Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351–1362. doi: 10.1016/S0140-6736(21)00628-0
  • Martin P, Gleeson S, Clarke CL, et al. Comparison of immunogenicity and clinical effectiveness between BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines in people with end-stage kidney disease receiving haemodialysis: a prospective, observational cohort study. Lancet Reg Health Eur. 2022;21:100478. doi: 10.1016/j.lanepe.2022.100478
  • Yang Z, Jiang Y, Li F, et al. Efficacy of SARS-CoV-2 vaccines and the dose–response relationship with three major antibodies: a systematic review and meta-analysis of randomised controlled trials. Lancet Microbe. 2023;4(4):e236–e246. doi: 10.1016/S2666-5247(22)00390-1
  • Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. (London). 2021;595(7868):572–577. doi: 10.1038/s41586-021-03653-6
  • Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–555. doi: 10.1038/s41590-022-01163-9
  • Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev. 2019;32(2):84. doi:10.1128/CMR.00084-18
  • Dhakal S, Klein SL, Coyne CB. Host factors impact vaccine efficacy: implications for seasonal and universal influenza vaccine programs. J Virol. 2019;93(21):797. doi:10.1128/JVI.00797-19
  • Falahi S, Kenarkoohi A. Host factors and vaccine efficacy: implications for COVID‐19 vaccines. J Med Virol. 2022;94(4):1330–1335. doi:10.1002/jmv.27485
  • Takala SL, Plowe CV. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’. Parasite Immunol. 2009;31(9):560–573. doi:10.1111/j.1365-3024.2009.01138.x
  • Mentzer AJ, O’Connor D, Pollard AJ, et al. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans Royal Soc B. 2015;370(1671):20140341. doi:10.1098/rstb.2014.0341
  • Mentzer AJ, O’Connor D, Bibi S, et al. Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection. Nature Med. 2023;29(1):147–157. doi: 10.1038/s41591-022-02078-6
  • Magri C, Marchina E, Sansone E, et al. Genome-wide association studies of response and side effects to the BNT162b2 vaccine in Italian healthcare workers: increased antibody levels and side effects in carriers of the HLA-A03: 01 allele. HLA: Immune Resp Genetics. 2023;102(6):707–719. doi: 10.1111/tan.15157
  • Khor S, Omae Y, Takeuchi JS, et al. An association study of HLA with the kinetics of SARS-CoV-2 spike specific IgG antibody responses to BNT162b2 mRNA vaccine. Vaccines (Basel). 2022;10(4):563. doi: 10.3390/vaccines10040563
  • Bian S, Guo X, Yang X, et al. Genetic determinants of IgG antibody response to COVID-19 vaccination. Am J Hum Genet. 2024;111(1):181–199. doi: 10.1016/j.ajhg.2023.12.005
  • Higuchi T, Oka S, Furukawa H, et al. Associations of HLA polymorphisms with anti-SARS-CoV-2 Spike and neutralizing antibody titers in Japanese rheumatoid arthritis patients vaccinated with BNT162b2. Vaccines. 2023;11(2):404. doi: 10.3390/vaccines11020404
  • Gutiérrez-Bautista JF, Sampedro A, Gómez-Vicente E, et al. HLA class II polymorphism and humoral immunity induced by the SARS-CoV-2 mRNA-1273. Vaccine. 2022;10(3):402. doi: 10.3390/vaccines10030402
  • Crocchiolo R, Gallina AM, Pani A, et al. Polymorphism of the HLA system and weak antibody response to BNT162b2 mRNA vaccine. HLA. 2022;99(3):183–191. doi: 10.1111/tan.14546
  • Elhabyan A, Elyaacoub S, Sanad E, et al. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: a systematic review. Virus res. 2020;289:198163. doi:10.1016/j.virusres.2020.198163
  • Katsonis P, Koire A, Wilson SJ, et al. Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci. 2014;23(12):1650–1666. doi: 10.1002/pro.2552
  • Bolze A, Neveux I, Schiabor Barrett KM, et al. HLA-A*03: 01 is associated with increased risk of fever, chills, and stronger side effects from pfizer-BioNTech COVID-19 vaccination. HGG advances. 2022;3(2):100084. doi: 10.1016/j.xhgg.2021.100084
  • Prieto-Alhambra D, Xie J, Mothe B, et al. HLA alleles, COVID-19 vaccine antibody response and real-world breakthrough outcomes. 2023.
  • Sanchez‐Mazas A, Fernandez‐Viña M, Middleton D, et al. Immunogenetics as a tool in anthropological studies. Immunology. 2011;133(2):143–164. doi: 10.1111/j.1365-2567.2011.03438.x
  • Kløverpris HN, Payne RP, Sacha JB, et al. Early antigen presentation of protective HIV-1 KF11Gag and KK10Gag epitopes from incoming viral particles facilitates rapid recognition of infected cells by specific CD8+ T cells. J Virol. 2013;87(5):2628–2638. doi: 10.1128/JVI.02131-12
  • Invernizzi P. Human leukocyte antigen in primary biliary cirrhosis: an old story now reviving. Hepatology. 2011;54(2):714–723. doi: 10.1002/hep.24414
  • The International HapMap Consortium. A haplotype map of the human genome Nature. 2005;437(7063):1299–1320 doi:10.1038/nature04226
  • Gobin SJP, van den Elsen PJ. Transcriptional regulation of the MHC class ib genes HLA-E, HLA-F, and HLA-G. Hum Immunol. 2000;61(11):1102–1107. doi: 10.1016/S0198-8859(00)00198-1
  • Stephens HAF. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol. 2001;22(7):378–385. doi:10.1016/S1471-4906(01)01960-3
  • Dendrou CA, Petersen J, Rossjohn J, et al. HLA variation and disease. Nat Rev Immunol. 2018;18(5):325–339. doi: 10.1038/nri.2017.143
  • Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nature Genet. 2016;48(3):318–322. doi: 10.1038/ng.3498
  • Dunstan SJ, Hue NT, Han B, et al. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nature Genet. 2014;46(12):1333–1336. doi: 10.1038/ng.3143
  • Mentzer A, Dilthey A, Pollard M, et al. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. MedRxiv. 2022. doi: 10.1101/2022.11.24.22282715
  • Roberts GHL, Partha R, Rhead B, et al. Expanded COVID-19 phenotype definitions reveal distinct patterns of genetic association and protective effects. Nature Genet. 2022;54(4):374–381. doi: 10.1038/s41588-022-01042-x
  • Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–98. doi: 10.1038/s41586-020-03065-y
  • Shelton JF, Shastri AJ, Ye C, et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nature Genet. 2021;53(6):801–808. doi: 10.1038/s41588-021-00854-7
  • Horowitz JE, Kosmicki JA, Damask A, et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nature Genet. 2022;54(4):382–392. doi: 10.1038/s41588-021-01006-7
  • Bulik-Sullivan BK, Sullivan PF. The authorship network of genome-wide association studies. Nature Genet. 2012;44(2):113. doi: 10.1038/ng.1052
  • Jansen P, Nakanishi T, Priest J, et al. A second update on mapping the human genetic architecture of COVID-19. Nature. 2023;621(7977):E7–E26. doi: 10.1038/s41586-023-06355-3
  • Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet (London, England). 2022;400(10349):359–368. doi: 10.1016/S0140-6736(22)01109-6
  • Augusto DG, Murdolo LD, Chatzileontiadou DSM, et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature. 2023;620(7972):128–136. doi: 10.1038/s41586-023-06331-x
  • Song K, Xu H, Shi Y, et al. Discovering SARS-CoV-2 neoepitopes and the associated TCR-pMHC recognition mechanisms by combining single-cell sequencing, deep learning, and molecular dynamics simulation techniques. bioRxiv. 2023. doi: 10.1101/2023.02.02.526761
  • Minervina AA, Pogorelyy MV, Kirk AM, et al. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nat Immunol. 2022;23(5):781–790. doi: 10.1038/s41590-022-01184-4
  • Nguyen A, David JK, Maden SK, et al. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J Virol. 2020;94(13):510. doi: 10.1128/JVI.00510-20
  • Lin M, Tseng H, Trejaut JA, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. 2003;4(1). doi: 10.1186/1471-2350-4-9
  • Epstein SL. Control of influenza virus infection by immunity to conserved viral features. Exp Rev Anti-Infective Ther. 2003;1(4):627–638. doi: 10.1586/14787210.1.4.627
  • Liang S, Mozdzanowska K, Palladino G, et al. Heterosubtypic immunity to influenza type a virus in mice. Eff Mech Longevity. 1994;152(4):1653–1661. doi:10.4049/jimmunol.152.4.1653
  • Liu DX, Liang JQ, Fung TS. Human coronavirus-229E, -OC43, -NL63, and -HKU1 (coronaviridae). Encyclopedia of Virology. 2021;428–440. doi: 10.1016/B978-0-12-809633-8.21501-X
  • Peng Y, Felce SL, Dong D, et al. An immunodominant NP105–113-B*07: 02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nat Immunol. 2022;23(1):50–61. doi: 10.1038/s41590-021-01084-z
  • Marchal A, Cirulli ET, Neveux I, et al. Lack of association between HLA and asymptomatic SARS-CoV-2 infection. 2023.
  • Littera R, Campagna M, Deidda S, et al. Human Leukocyte Antigen Complex and other immunogenetic and clinical factors influence susceptibility or protection to SARS-CoV-2 infection and severity of the disease course. The Sardinian Exp. 2020;11:605688. doi: 10.3389/fimmu.2020.605688
  • Haq IU, Krukiewicz K, Tayyab H, et al. Molecular understanding of ACE-2 and HLA-Conferred differential susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med. 2023;12(7):2645. doi: 10.3390/jcm12072645
  • Migliorini F, Torsiello E, Spiezia F, et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):1–84. doi: 10.1186/s40001-021-00563-1
  • Dieter C, Brondani L, Leitão CB, et al. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: a systematic review and meta-analysis. PLOS ONE. 2022;17(7):e0270627. doi: 10.1371/journal.pone.0270627
  • Pisanti S, Deelen J, Gallina AM, et al. Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of covid-19. J Transl Med. 2020;18(1):352. doi: 10.1186/s12967-020-02515-5
  • Correale P, Mutti L, Pentimalli F, et al. HLA-B44 and C01 prevalence correlates with COVID-19 spreading across Italy. Int J Mol Sci. 2020;21(15):5205. doi: 10.3390/ijms21155205
  • Akcay OF, Yeter HH, Unsal Y, et al. Impact of HLA polymorphisms on the susceptibility to SARS-CoV-2 infection and related mortality in patients with renal replacement therapy. Hum Immunol. 2023;84(4):272–277. doi: 10.1016/j.humimm.2023.01.008
  • CICCONE E, PENDE D, MORETTA L, et al. Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med. 1992;176(4):963–971. doi: 10.1084/jem.176.4.963
  • Lani R, Senin NA, AbuBakar S, et al. Knowledge of SARS-CoV-2 epitopes and Population HLA Types Is Important in the design of COVID-19 vaccines. Vaccines. 2022;10(10):1606. doi: 10.3390/vaccines10101606
  • Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254. doi: 10.3390/v12030254
  • Lim HX, Lim J, Jazayeri SD, et al. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomed J. 2021;44(1):18–30. doi: 10.1016/j.bj.2020.09.005
  • Reusch N, De Domenico E, Bonaguro L, et al. Neutrophils in COVID-19. Front Immunol. 2021;12:652470. doi: 10.3389/fimmu.2021.652470
  • Faiza M, Abdullah T, Franklin Calderon-Tantalean J, et al. In silico multi-epitope vaccine against COVID-19 showing effective interaction with HLA-B15: 03. bioRxiv (Cold Spring Harbor Laboratory). 2020. doi: 10.1101/2020.06.10.143545
  • Kimura I, Kosugi Y, Wu J, et al. The SARS-CoV-2 lambda variant exhibits enhanced infectivity and immune resistance. Cell Rep. 2022;38(2):110218. doi: 10.1016/j.celrep.2021.110218
  • Baindara P, Agrawal S, Mandal SM. Host-directed therapies: a potential solution to combat COVID-19. Expert Opin Biol Ther. 2020;20(10):1117–1120. doi: 10.1080/14712598.2020.1807001
  • Wadud N, Ahmed N, Mannu Shergil M, et al. Improved survival outcome in SARs-CoV-2 (COVID-19) acute respiratory distress syndrome patients with Tocilizumab administration. Chest. 2020;158:A696–A697. doi: 10.1016/j.chest.2020.08.654
  • Lee M. Recent advances in generative adversarial networks for gene expression data: a comprehensive review. Mathematics. 2023;11(14):3055. doi: 10.3390/math11143055
  • Malone B, Simovski B, Moliné C, et al. Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs. Sci Rep. 2020;10(1):22375. doi: 10.1038/s41598-020-78758-5
  • Chu Y, Zhang Y, Wang Q, et al. A transformer-based model to predict peptide – HLA class I binding and optimize mutated peptides for vaccine design. Nature Mach Intell. 2022;4(3):300–311. doi: 10.1038/s42256-022-00459-7
  • Ramamoorthy Govindarajan K, Kangueane P, Wee Tan T, et al. MPID: MHC-Peptide interaction database for sequence-structure-function information on peptides binding to MHC molecules. Bioinformatics. 2003;19(2):309–310. doi: 10.1093/bioinformatics/19.2.309
  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6(5):404–414. doi: 10.1038/nrd2224
  • Koşaloğlu-Yalçın Z, Lanka M, Frentzen A, et al. Predicting T cell recognition of MHC class I restricted neoepitopes. Oncoimmunology. 2018;7(11):e1492508. doi: 10.1080/2162402X.2018.1492508
  • Purcell RA, Theisen RM, Arnold KB, et al. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol. 2023;14:1183727. doi: 10.3389/fimmu.2023.1183727
  • Fericean RM, Oancea C, Reddyreddy AR, et al. Outcomes of elderly patients hospitalized with the SARS-CoV-2 omicron B.1.1.529 variant: a systematic review. Int J Environ Res Public Health. 2023;20(3):2150. doi: 10.3390/ijerph20032150

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.