335
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Highly ion-selective sulfonated poly (4,4′-diphenylether-5,5′-bibenzimidazole) membranes for vanadium redox flow battery

, , &
Article: 2327288 | Received 09 Jan 2024, Accepted 24 Jan 2024, Published online: 15 Mar 2024

References

  • Yuan Z, Li X, Duan Y, et al. Application and degradation mechanism of polyoxadiazole based membrane for vanadium flow batteries. J Membr Sci. 2015;488:1–11. doi: 10.1016/j.memsci.2015.04.019.
  • Chae IS, Luo T, Moon GH, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv Energy Mater. 2016;6(16):1600517–1600523. doi: 10.1002/aenm.201600517.
  • Jiang B, Wu L, Yu L, et al. A comparative study of nafion series membranes for vanadium redox flow batteries. J Membr Sci. 2016;510:18–26. doi: 10.1016/j.memsci.2016.03.007.
  • Lu W, Yuan Z, Zhao Y, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy Environ Sci. 2016;9(7):2319–2325. doi: 10.1039/C6EE01371F.
  • Zhao Y, Li M, Yuan Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries. Adv Funct Materials. 2016;26(2):210–218. doi: 10.1002/adfm.201503390.
  • Zhang Y, Wang H, Liu B, et al. An ultra-high ion selective hybrid proton exchange membrane incorporated with zwitterion-decorated graphene oxide for vanadium redox flow batteries. J Mater Chem A. 2019;7(20):12669–12680. doi: 10.1039/C9TA01891C.
  • Xie C, Yan H, Song Y, et al. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron–chromium flow batteries. J Power Sources. 2023;564:232860. doi: 10.1016/j.jpowsour.2023.232860.
  • Cheng Y, Zhang N, Wang Q, et al. A long-life hybrid zinc flow battery achieved by dual redox couples at cathode. Nano Energy. 2019;63:103822. doi: 10.1016/j.nanoen.2019.06.018.
  • Fornari RP, Mesta M, Hjelm J, et al. Molecular engineering strategies for symmetric aqueous organic redox flow batteries. ACS Materials Lett. 2020;2(3):239–246. doi: 10.1021/acsmaterialslett.0c00028.
  • Ye J, Cheng Y, Sun L, et al. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J Membr Sci. 2019;572:110–118. doi: 10.1016/j.memsci.2018.11.009.
  • Ahn Y, Kim D. Ultra-low vanadium ion permeable electrolyte membrane for vanadium redox flow battery by pore filling of PTFE substrate. Energy Storage Mater. 2020;31:105–114. doi: 10.1016/j.ensm.2020.06.035.
  • Zhang H, Yan X, Gao L, et al. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-Conducting channels of amphoteric membranes for high-performance vanadium redox flow battery. ACS Appl Mater Interfaces. 2019;11(5):5003–5014. doi: 10.1021/acsami.8b18617.
  • Shi M, Dai Q, Li F, et al. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery. Adv Energy Mater. 2020;10(34). doi: 10.1002/aenm.202001382.
  • Di M, Hu L, Gao L, et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries. Chemical Engineering Journal. 2020;399:125833. doi: 10.1016/j.cej.2020.125833.
  • Mo F, Chen Z, Liang G, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv Energy Mater. 2020;10(16):2000035–2000047. doi: 10.1002/aenm.202000035.
  • Wan L, Xu Z, Wang P, et al. H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis. J Membr Sci. 2021;618:118642. doi: 10.1016/j.memsci.2020.118642.
  • Najibah M, Tsoy E, Khalid H, et al. PBI nanofiber mat-reinforced anion exchange membranes with covalently linked interfaces for use in water electrolysers. J Membr Sci. 2021;640:119832. doi: 10.1016/j.memsci.2021.119832.
  • Yang S, Ahn Y, Kim D. Poly(arylene ether ketone) proton exchange membranes grafted with long aliphatic pendant sulfonated groups for vanadium redox flow batteries. J Mater Chem A. 2017;5(5):2261–2270. doi: 10.1039/C6TA07456A.
  • Maity S, Jana T. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM. ACS Appl Mater Interfaces. 2014;6(9):6851–6864. doi: 10.1021/am500668c.
  • Yang J, Li Q, Lars N, et al. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater. 2013;3(5):622–630. doi: 10.1002/aenm.201200710.
  • Lv B, Yin H, Shao Z, et al. Novel polybenzimidazole/graphitic carbon nitride nanosheets composite membrane for the application of acid-alkaline amphoteric water electrolysis. J Energy Chem. 2022;64:607–614. doi: 10.1016/j.jechem.2021.05.009.
  • Zhu M, Zhang X, Wang Y, et al. Novel anion exchange membranes based on quaternized diblock copolystyrene containing a fluorinated hydrophobic block. J Membr Sci. 2018;554:264–273. doi: 10.1016/j.memsci.2018.01.055.
  • Anahidzade N, Abdolmaleki A, Dinari M, et al. Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells. J Membr Sci. 2018;565:281–292. doi: 10.1016/j.memsci.2018.08.037.