315
Views
3
CrossRef citations to date
0
Altmetric
Review

The piperazine scaffold for novel drug discovery efforts: the evidence to date

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 969-984 | Received 09 Mar 2022, Accepted 15 Jul 2022, Published online: 28 Jul 2022

References

  • Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem. 1988;31(12):2235–2246.
  • Skoreński M, Sieńczyk M. The fellowship of privileged Scaffolds—One structure to inhibit them all. Pharmaceuticals. 2021;14(11):1164.
  • Garrido A, Vera G, Delaye P-O, et al. Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: an extensive review. Eur J Med Chem. 2021;226:113867. DOI: 10.1016/j.ejmech.2021.113867.
  • Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA Approved pharmaceuticals. J Med Chem. 2014;57(24):10257–10274.
  • Asif M. Piperazine and pyrazine containing molecules and their diverse pharmacological activities. Int J Adv Sci Res. 2015;1(1):5–11.
  • Shaquiquzzaman M, Verma G, Marella A, et al. Piperazine scaffold: a remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem. 2015;102(Supplement C):487–529.
  • Singh K, Siddiqui HH, Shakya P, et al. Piperazine – a biologically active scaffold. Int J Pharm Sci Res. 2015;6(10):4145–4158.
  • Rathi AK, Syed R, Shin H-S, et al. Piperazine derivatives for therapeutic use: a patent review (2010-present). Expert Opin Ther Pat. 2016;26(7):777–797.
  • Brito AF, Moreira LKS, Menegatti R, et al. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fund Clin Pharmacol. 2019;33(1):13–24.
  • Sharma A, Wakode S, Fayaz F, et al. An overview of piperazine scaffold as promising nucleus for different therapeutic targets. Curr Pharm Des. 2020;26(35):4373–4385.
  • Zhang R-H, Guo H-Y, Deng H, et al. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem. 2021;36(1):1165–1197.
  • Kumar RR, Sahu B, Pathania S, et al. Piperazine, a key substructure for antidepressants: its role in developments and structure-activity relationships. ChemMedChem. 2021;16(12):1878–1901.
  • Girase PS, Dhawan S, Kumar V, et al. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: a review. Eur J Med Chem. 2021;210:112967.
  • Rathore A, Asati V, Kashaw KS, et al. The recent development of piperazine and piperidine derivatives as antipsychotic agents. Mini-Rev Med Chem. 2021;21(3):362–379.
  • Jain A, Chaudhary J, Khaira H, et al. Piperazine: a promising scaffold with analgesic and anti-inflammatory potential. Drug Res (Stuttg). 2021;71(2):62–72.
  • RdC M, Tesch R, Fraga CAM. Phenylpiperazine derivatives: a patent review (2006 – present). Expert Opin Ther Pat. 2012;22(10):1169–1178.
  • [cited 2022 May 18]. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products
  • Tagiuri A, Mohamedali M, Henni A. Dissociation constant (pKa) and thermodynamic properties of some tertiary and cyclic amines from (298 to 333) K. J Chem Eng Data. 2016;61(1):247–254.
  • Khalili F, Henni A, East ALL. pKa values of some piperazines at (298, 303, 313, and 323) K. J Chem Eng Data. 2009;54(10):2914–2917.
  • Mokrosz JL, Mokrosz MJ, Charakchieva-Minol S, et al. Structure-activity relationship studies of CNS agents, XIX: quantitative analysis of the alkyl chain effects on the 5-HT1A and 5-HT2 receptor affinities of 4-Alkyl-1-arylpiperazines and their analogs. Arch Pharm. 1995;328(2):143–148.
  • Lacivita E, Leopoldo M, Giorgio PD, et al. Determination of 1-aryl-4-propylpiperazine pKa values: the substituent on aryl modulates basicity. Bioorg Med Chem. 2009;17(3):1339–1344.
  • Hall HK. Field and inductive effects on the base strengths of amines. J Am Chem Soc. 1956;78(11):2570–2572.
  • Poratti M, Marzaro G. Third-generation CDK inhibitors: a review on the synthesis and binding modes of palbociclib, ribociclib and abemaciclib. Eur J Med Chem. 2019;172:143–153.
  • Huang W-S, Liu S, Zou D, et al. Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma Kinase. J Med Chem. 2016;59(10):4948–4964.
  • Kawase T, Nakazawa T, Eguchi T, et al. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget. 2019;10(58):6111–6123.
  • Menichincheri M, Ardini E, Magnaghi P, et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J Med Chem. 2016;59(7):3392–3408.
  • Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), A potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54(20):7066–7083.
  • Naryshkin NA, Weetall M, and Dakka A, et al., SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345(6197):688–693.
  • Ratni H, Karp GM, Weetall M, et al. Specific correction of alternative survival motor neuron 2 splicing by small molecules: discovery of a potential novel medicine To treat spinal muscular atrophy. J Med Chem. 2016;59(13):6086–6100.
  • Ratni H, Ebeling M, Baird J, et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J Med Chem. 2018;61(15):6501–6517.
  • Campagne S, Boigner S, Rüdisser S, et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nature Chem Biol. 2019;15(12)1191–1198 .
  • Prior IA, Lewis PD, Mattos C. A comprehensive survey of ras mutations in cancer. Cancer Res. 2012;72(10):2457–2467.
  • Ostrem JM, Peters U, Sos ML, et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–551.
  • Patricelli MP, Janes MR, L-S L, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Disc. 2016;6(3):316–329.
  • Janes MR, Zhang J, L-S L, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172(3):578–589.e17.
  • Shin Y, Jeong JW, Wurz RP, et al. Discovery of N-(1-Acryloylazetidin-3-yl)-2-(1H-indol-1-yl)acetamides as Covalent Inhibitors of KRASG12C. ACS Med Chem Lett. 2019;10(9):1302–1308.
  • Lanman BA, Allen JR, Allen JG, et al. Discovery of a covalent Inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63(1):52–65.
  • Fell JB, Fischer JP, Baer BR, et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C Inhibitor for the treatment of cancer. J Med Chem. 2020;63(13):6679–6693.
  • Lai Y-T. Small molecule HIV-1 attachment inhibitors: discovery, mode of action and structural basis of inhibition. Viruses. 2021;13(5):843.
  • Wang T, Kadow JF, Meanwell, et al. Innovation in the discovery of the HIV-1 attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir. Med Chem Res. 2021;30(11):1955–1980 .
  • Wang T, Yin Z, Zhang Z, et al. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-Benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J Med Chem. 2009;52(23):7778–7787.
  • Pancera M, Lai Y-T, Bylund T, et al. Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nature Chem Biol. 2017;13(10):1115–1122.
  • Teixeira C, Serradji N, Amroune S, et al. Is the conformational flexibility of piperazine derivatives important to inhibit HIV-1 replication? J Mol Graph Mod. 2013;44:91–103. DOI: 10.1016/j.jmgm.2013.05.003.
  • Shuker SB, Hajduk PJ, Meadows RP, et al., Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996;274(5292): 1531–1534 .
  • Petros AM, Dinges J, Augeri DJ, et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem. 2006;49(2):656–663.
  • Wendt MD, Shen W, Kunzer A, et al. Discovery and structure−activity relationship of antagonists of b-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem. 2006;49(3):1165–1181.
  • Bruncko M, Oost TK, Belli BA, et al. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem. 2007;50(4):641–662.
  • Park C-M, Bruncko M, Adickes J, et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem. 2008;51(21):6902–6915.
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Med. 2013;19(2):202–208.
  • Shirley M. Maralixibat: first approval. Drugs. 2022;82(1):71–76.
  • Huang H-C, Tremont SJ, Lee LF, et al. Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 2). J Med Chem. 2005;48(18):5853–5868.
  • Markham A. Lurbinectedin: first Approval. Drugs. 2020;80(13):1345–1353.
  • Jimenez PC, Wilke DV, Branco PC, et al. Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol. 2020;177(1):3–27.
  • Lee T, Robichaud AJ, Boyle KE, et al. Novel, highly potent, selective 5-HT2A/D2 receptor antagonists as potential atypical antipsychotics. Bioorg Med Chem Lett. 2003;13(4):767–770.
  • Li P, Zhang Q, Robichaud AJ, et al. Discovery of a tetracyclic quinoxaline derivative as a potent and orally active multifunctional drug candidate for the treatment of neuropsychiatric and neurological disorders. J Med Chem. 2014;57(6):2670–2682.
  • Kang CF. First Approval. Drugs. 2021;81(8):953–956.
  • Hover BM, Lilla EA, Yokoyama K. Mechanistic investigation of cPMP synthase in molybdenum cofactor biosynthesis using an uncleavable substrate analogue. Biochemistry. 2015;54(49):7229–7236.
  • Subbiah V, Shen T, Terzyan SS, et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol. 2021;32(2):261–268.
  • Nilsson J, Wikström H, Smilde A, et al. GRID/GOLPE 3D quantitative structure−activity relationship study on a set of benzamides and naphthamides, with affinity for the dopamine D3 receptor subtype. J Med Chem. 1997;40(6):833–840.
  • Chen G, Portman R, Wickel A. Pharmacology of 1,1-dimethyl-4-phenylpiperazinium iodide, a ganglion stimulating agent. J Pharmacol Exp Ther. 1951;103(3):330–330.
  • Manetti D, Bartolini A, Borea PA, et al. Hybridized and isosteric analogues of N1-acetyl-N4-dimethyl-piperazinium iodide (ADMP) and N1-phenyl-N4-dimethyl-piperazinium iodide (DMPP) with central nicotinic action. Bioorg Med Chem. 1999;7(3):457–465.
  • Romanelli MN, Manetti D, Scapecchi S, et al. Structure−affinity relationships of a unique nicotinic ligand:  n-Dimethyl-N4-phenylpiperazinium iodide (DMPP). J Med Chem. 2001;44(23):3946–3955.
  • Nielsen SF, Nielsen EØ, Olsen GM, et al. Novel potent ligands for the central nicotinic acetylcholine receptor:  synthesis, receptor binding, and 3D-QSAR analysis. J Med Chem. 2000;43(11):2217–2226.
  • Toma L, Quadrelli P, Bunnelle WH, et al. 6-Chloropyridazin-3-yl derivatives active as nicotinic agents:  synthesis,binding, and modeling studies. J Med Chem. 2002;45(18):4011–4017.
  • Spande TF, Garraffo HM, Edwards MW, et al. Epibatidine: a novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadorian poison frog. J Am Chem Soc. 1992;114(9):3475–3478.
  • Romanelli MN, Gratteri P, Guandalini L, et al. Central nicotinic receptors: structure, function, ligands, and therapeutic potential. ChemMedChem. 2007;2(6):746–767.
  • Murineddu G, Murruzzu C, Curzu MM, et al. Synthesis of 3,6-diazabicyclo[3.1.1]heptanes as novel ligands for neuronal nicotinic acetylcholine receptors. Bioorg Med Chem Lett. 2008;18(23):6147–6150.
  • The asterisk indicates the possible presence of other subunits in the receptor complex.
  • Bunnelle WH, Daanen JF, Ryther KB, et al., Structure−activity studies and analgesic efficacy of N-(3-Pyridinyl)-bridged bicyclic diamines, exceptionally potent agonists at nicotinic acetylcholine receptors. J Med Chem. 2007;50(15): 3627–3644 .
  • Bunnelle WH, Barlocco D, and Daanen JF, et al., inventors. Diazabicyclic derivatives as nicotinic acetylcholine receptor ligands. EP1147112 (A1). 2000 August 03.
  • Deligia, F, Murineddu G, and Gotti C, et al. Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors. Eur J Med Chem. 2018;152:401–416.
  • Murineddu G, Gotti C, Asproni B, et al. Novel N-aryl nicotinamide derivatives: taking stock on 3,6-diazabicyclo[3.1.1]heptanes as ligands for neuronal acetylcholine receptors. Eur J Med Chem. 2019;180:51–61. DOI: 10.1016/j.ejmech.2019.06.079.
  • Strachan J-P, Kombo DC, Mazurov A, et al. Identification and pharmacological characterization of 3,6-diazabicyclo[3.1.1]heptane-3-carboxamides as novel ligands for the α4β2 and α6/α3β2β3 nicotinic acetylcholine receptors (nAChRs). Eur J Med Chem. 2014;86:60–74. DOI: 10.1016/j.ejmech.2014.08.019.
  • Zhang D, Mallela A, Sohn D, et al. Nicotinic receptor agonists reduce L-DOPA–Induced dyskinesias in a monkey model of Parkinson’s disease. J Pharmacol Exp Ther. 2013;347(1):225–234.
  • Pismataro MC, Horenstein NA, Stokes C, et al. Design, synthesis, and electrophysiological evaluation of NS6740 derivatives: exploration of the structure-activity relationship for alpha7 nicotinic acetylcholine receptor silent activation. Eur J Med Chem. 2020;205:112669. DOI: 10.1016/j.ejmech.2020.112669.
  • Coe JW, O’Donnell CJ, and O’Neill BT, et al., inventors. Diazabicyclic compounds useful in the treatment of CNS and other disorders. US20040106603A1. 2004 June 03.
  • O’donnell CJ, Vincent LA, and O’Neill BT, et al., inventors. Diazabicyclic compounds useful in the treatment of CNS and other disorders. WO2004024729A1. 2004 March 25.
  • Manetti D, Bellucci C, Dei S, et al. New quinoline derivatives as nicotinic receptor modulators. Eur J Med Chem. 2016;110:246–258. DOI: 10.1016/j.ejmech.2016.01.025.
  • Darby RAJ, Callaghan R, McMahon RM. P-glycoprotein inhibition: the past, the present and the future. Curr Drug Metab. 2011;12(8):722–731.
  • Kimura Y, Aoki J, Kohno M, et al. P-glycoprotein inhibition by the multidrug resistance-reversing agent MS-209 enhances bioavailability and antitumor efficacy of orally administered paclitaxel. Cancer Chemother Pharmacol. 2002;49(4):322–328.
  • Abate C, Niso M, Contino M, et al. 1-Cyclohexyl-4-(4-arylcyclohexyl)piperazines: mixed σ and human Δ8–Δ7 sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. ChemMedChem. 2011;6(1):73–80.
  • Spengler G, Evaristo M, Handzlik J, et al. Biological activity of hydantoin derivatives on P-Glycoprotein (ABCB1) of mouse lymphoma cells. Anticancer Res. 2010;30(12):4867–4871.
  • Spengler G, Handzlik J, Ocsovszki I, et al. Modulation of multidrug efflux pump activity by new hydantoin derivatives on colon adenocarcinoma cells without inducing apoptosis. Anticancer Res. 2011;31(10):3285–3288.
  • Handzlik J, Spengler G, Mastek B, et al. 5-arylidene(thio)hydantoin derivatives as modulators of cancer efflux pump. Acta Pol Pharm. 2012;69(1):149–156.
  • Żesławska E, Kincses A, Spengler G, et al. The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): synthesis, crystallographic and biological studies. Bioorg Med Chem. 2016;24(12):2815–2822.
  • Dei S, Coronnello M, Bartolucci G, et al. Design and synthesis of new potent N,N-bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents. Eur J Med Chem. 2018;147:7–20. DOI: 10.1016/j.ejmech.2018.01.092.
  • Martelli C, Dei S, Lambert C, et al. Inhibition of P-glycoprotein-mediated Multidrug Resistance (MDR) by N,N-bis(cyclohexanol)amine aryl esters: further restriction of molecular flexibility maintains high potency and efficacy. Bioorg Med Chem Lett. 2011;21(1):106–109.
  • Teodori E, Contino M, Riganti C, et al. Design, synthesis and biological evaluation of stereo- and regioisomers of amino aryl esters as multidrug resistance (MDR) reversers. Eur J Med Chem. 2019;182:111655. DOI: 10.1016/j.ejmech.2019.111655.
  • Szczepańska K, Kincses A, Vincze K, et al. N-Substituted piperazine derivatives as potential multitarget agents acting on histamine H3 receptor and cancer resistance proteins. Bioorg Med Chem Lett. 2020;30(22):127522.
  • Hussein N, Amawi H, Karthikeyan C, et al. The dopamine D3 receptor antagonists PG01037, NGB2904, SB277011A, and U99194 reverse ABCG2 transporter-mediated drug resistance in cancer cell lines. Cancer Lett. 2017;396:167–180.
  • Jia Y, Zhao L. The antibacterial activity of fluoroquinolone derivatives: an update (2018–2021). Eur J Med Chem. 2021;224:113741. .
  • Sriram D, Yogeeswari P, Senthilkumar P, et al. 5-Nitro-2,6-dioxohexahydro-4-pyrimidinecarboxamides: synthesis, in vitro antimycobacterial activity, cytotoxicity, and isocitrate lyase inhibition studies. J Enzyme Inhib Med Chem. 2010;25(6):765–772.
  • McKinney JD, Zu Bentrup KH, Muñoz-Elías EJ, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406(6797):735–738.
  • Picconi P, Prabaharan P, Auer JL, et al. Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species. Bioorg Med Chem. 2017;25(15):3971–3979.
  • Rakesh BD, Madhura DB, Madhura DB, et al. Antitubercular nitrofuran isoxazolines with improved pharmacokinetic properties. Bioorg Med Chem. 2012;20(20):6063–6072.
  • Tiwari R, Miller PA, Cho S, et al. Syntheses and antituberculosis activity of 1,3-benzothiazinone sulfoxide and sulfone derived from BTZ043. ACS Med Chem Lett. 2015;6(2):128–133.
  • Shruthi TG, Eswaran S, Shivarudraiah P, et al. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorg Med Chem Lett. 2019;29(1):97–102.
  • Kaur P, Potluri V, Ahuja VK, et al. A multi-targeting pre-clinical candidate against drug-resistant tuberculosis. Tuberculosis. 2021;129:102104.
  • Lv K, Li L, Wang B, et al. Design, synthesis and antimycobacterial activity of novel imidazo[1,2-a]pyridine-3-carboxamide derivatives. Eur J Med Chem. 2017;137:117–125. DOI: 10.1016/j.ejmech.2017.05.044.
  • Mekky AEM, Sanad SMH. Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg Chem. 2020;102:104094.
  • Makarov V, Lechartier B, Zhang M, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med. 2014;6(3):372–383.
  • Makarov V, Mikušová K. Development of macozinone for TB treatment: an update. Appl Sci. 2020;10(7):2269.
  • Wang A, Lu Y, Lv K, et al. Design, synthesis and antimycobacterial activity of new benzothiazinones inspired by rifampicin/rifapentine. Bioorg Chem. 2020;102:104135.
  • Wang A, Xu S, Chai Y, et al. Design, synthesis and biological activity of N-(amino)piperazine-containing benzothiazinones against Mycobacterium tuberculosis. Eur J Med Chem. 2021;218:113398. DOI: 10.1016/j.ejmech.2021.113398.
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010;14(3):347–361.
  • Mitscher LA. Bacterial Topoisomerase Inhibitors:  quinolone and Pyridone Antibacterial Agents. Chem Rev. 2005;105(2):559–592.
  • Capdeville R, Buchdunger E, Zimmermann J, et al. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1(7):493–502 .
  • Dantas RF, Evangelista TCS, Neves BJ, et al. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov. 2019;14(12):1269–1282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.