183
Views
3
CrossRef citations to date
0
Altmetric
Review

Anti-trypanosomatid structure-based drug design – lessons learned from targeting the folate pathway

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1029-1045 | Received 29 Apr 2022, Accepted 12 Aug 2022, Published online: 07 Oct 2022

References

  • WHO. WHO - Trypanosomiasis, human African (sleeping sickness) [Internet]. 2022 [cited 2022 Jan 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
  • WHO. WHO - Chagas disease (American trypanosomiasis) [Internet]. 2022 [cited 2022 Jan 24]. Available from: https://www.who.int/health-topics/chagas-disease
  • WHO. WHO - Leishmaniasis [Internet]. 2022 [cited 2022 Jan 24]. Available from: https://www.who.int/health-topics/leishmaniasis
  • Els T, Bourdin Trunz B, Tweats D, et al. Fexinidazole – a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis. 2010;4:1–15.
  • Alirol E, Schrumpf D, Amici Heradi J, et al. Nifurtimox-eflornithine combination therapy for second-stage gambiense human African trypanosomiasis: médecins Sans Frontières experience in the Democratic Republic of the Congo. Clin Infect Dis. 2013;56(2):195–203.
  • Maxmen A. Sleeping sickness can now be cured with pills. Nature. 2017;550(7677):441.
  • Deeks ED. Fexinidazole: first global approval. Drugs. 2019;79(2):215–220.
  • Sharma VP. Re-emergence of malaria in India. Indian J Med Res. 1996;103:26–45.
  • Simarro P, Franco J, Diarra A, et al. Epidemiology of human African trypanosomiasis. Clin Epidemiol. 2014;6:257–275.
  • Simo G, Mbida JAM, Eyenga VE, et al. Challenges towards the elimination of Human African trypanosomiasis in the sleeping sickness focus of Campo in southern Cameroon. Parasit Vectors. 2014;7(1):374.
  • Cnops J, Magez S, De Trez C. Escape mechanisms of African trypanosomes: why trypanosomosis is keeping us awake. Parasitology. 2014 [December/05];142(3):417–427.
  • Capela R, Moreira R, Lopes F. An overview of drug resistance in protozoal diseases. Int J Mol Sci. 2019;20(22):5748.
  • Grant C, Anderson N, Machila N. Stakeholder narratives on trypanosomiasis, their effect on policy and the scope for one health. PLoS Negl Trop Dis. 2015;9(12):e0004241.
  • Mulenga GM, Henning L, Chilongo K, et al. Insights into the control and management of human and bovine African trypanosomiasis in Zambia between 2009 and 2019—a review. Trop Med Infect Dis. 2020;5(3):115.
  • Simo G, Rayaisse JB. Challenges facing the elimination of sleeping sickness in west and Central Africa: sustainable control of animal trypanosomiasis as an indispensable approach to achieve the goal. Parasit Vectors. 2015;8(1):640.
  • de Souza W, de Carvalho TMU, Barrias ES, et al. Review on trypanosoma cruzi: host cell interaction. Int J Cell Biol. 2010;2010:295394.
  • Geiger A, Bossard G, Sereno D, et al. Escaping deleterious immune response in their hosts: lessons from trypanosomatids. Front Immunol. 2016;7:212.
  • Dorlo TPC, Balasegaram M, Beijnen JH, et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576–2597.
  • Baker N, de Koning HP, Mäser P, et al. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. 2013;29(3):110–118.
  • Frézard F, Monte-Neto R, Reis PG. Antimony transport mechanisms in resistant leishmania parasites. Biophys Rev. 2014;6(1):119–132.
  • Field MC, Horn D, Fairlamb AH, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol. 2017;15(4):217–231.
  • DNDi. DNDi - best science for the most neglected [Internet]. [cited 2022 Jan 24]. Available from: https://dndi.org/
  • Trypanogen. Trypanogen [Internet]. [cited 2022 Jan 22]. Available from: http://trypanogen.net/
  • Moraes CB, Witt G, Kuzikov M, et al. Accelerating drug discovery efforts for trypanosomatidic infections using an integrated transnational academic drug discovery platform. SLAS Discov. 2019;24(3):346–361.
  • NMTrypI. Welcome to NMTrypI - New medicines for trypanosomatidic infections [Internet]. [cited 2022 Jan 22]. Available from: https://fp7-nmtrypi.eu/
  • European Comission. New medicines for trypanosomatidic infections | NMTRYPI project | fact sheet | FP7 | CORDIS | European Comissison [Internet]. [cited 2022 Jan 22]. Available from: https://cordis.europa.eu/project/id/603240
  • Parasite-specific cyclic nucleotide phosphodiesterase inhibitors to target neglected parasitic diseases | PDE4NPD project | fact sheet | FP7 | CORDIS | European Comissison [Internet]. [cited 2022 Jan 22]. Available from: https://cordis.europa.eu/project/id/602666
  • Wang X, Song K, Li L, et al. Structure-based drug design strategies and challenges. Curr Top Med Chem. 2018;18(12):998–1006.
  • Myler PJ. Searching the Tritryp genomes for drug targets. Adv Exp Med Biol. 2008;625:133–140.
  • Calogeropoulou T, Magoulas GE, Pöhner I, et al. Hits and Lead Discovery in the Identification of New Drugs against the Trypanosomatidic Infections. In: Jayaprakash, V, Castagnolo, D, Özkay, Y, editors. Medicinal Chemistry of Neglected and Tropical Diseases: Advances in the Design and Synthesis of Antimicrobial Agents. Boca Raton (FL): CRC Press.; 2019. p. 185–231.
  • Kourbeli V, Chontzopoulou E, Moschovou K, et al. An overview on target-based drug design against kinetoplastid protozoan infections: human african trypanosomiasis, chagas disease and leishmaniases. Mol. 2021;26(15):4629.
  • Pereira CA, Sayé M, Reigada C, et al. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology. 2020;147(6):611–633.
  • Murima P, McKinney JD, Pethe K. Targeting bacterial central metabolism for drug development. Chem Biol. 2014;21(11):1423–1432.
  • Kumar S, Bhardwaj TR, Prasad DN, et al. Drug targets for resistant malaria: historic to future perspectives. Biomed Pharmacother. 2018;104:8–27.
  • Raimondi MV, Randazzo O, La FM, et al. DHFR inhibitors: reading the past for discovering novel anticancer agents. Molecules. 2019;24(6):1140.
  • Bello AR, Nare B, Freedman D, et al. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A. 1994;91(24):11442–11446.
  • Nare B, Hardy LW, Beverley SM. The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J Biol Chem. 1997;272(21):13883–13891.
  • Robello C, Navarro P, Castanys S, et al. A pteridine reductase gene ptr1 contiguous to a P-glycoprotein confers resistance to antifolates in Trypanosoma cruzi. Mol Biochem Parasitol. 1997;90(2):525–535.
  • Dawson A, Gibellini F, Sienkiewicz N, et al. Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate. Mol Microbiol. 2006;61(6):1457–1468.
  • Vickers TJ, Beverley SM, Docampo R. Folate metabolic pathways in Leishmania. Essays Biochem. 2011;51:63–80.
  • Panecka-Hofman J, Poehner I, Spyrakis F, et al. Comparative mapping of on-targets and off-targets for the discovery of anti-trypanosomatid folate pathway inhibitors. Biochim Biophys acta Gen Subj. 2017;1861(12):3215–3230.
  • Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol Microbiol. 2010;77(3):658–671.
  • Ong HB, Sienkiewicz N, Wyllie S, et al. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. J Biol Chem. 2011;286(12):10429–10438.
  • Cavazzuti A, Paglietti G, Hunter WN, et al. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc Natl Acad Sci U S A. 2008;105(5):1448–1453.
  • Tassone G, Landi G, Linciano P, et al. Evidence of pyrimethamine and cycloguanil analogues as dual inhibitors of Trypanosoma brucei pteridine reductase and dihydrofolate reductase. Pharmaceuticals (Basel). 2021;14(7):636.
  • Arrebola R, Olmo A, Reche P, et al. Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem. 1994;269(14):10590–10596.
  • Zuccotto F, Brun R, Gonzalez Pacanowska D, et al. The structure-based design and synthesis of selective inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg Med Chem Lett. 1999;9(10):1463–1468.
  • Dawson A, Tulloch LB, Barrack KL, et al. High-resolution structures of Trypanosoma brucei pteridine reductase ligand complexes inform on the placement of new molecular entities in the active site of a potential drug target. Acta Crystallogr D Biol Crystallogr. 2010;66(12):1334–1340.
  • Schormann N, Velu SE, Murugesan S, et al. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg Med Chem. 2010;18(11):4056–4066.
  • Herrera-Acevedo C, Flores-Gaspar A, Scotti L, et al. Identification of kaurane-type diterpenes as inhibitors of leishmania pteridine reductase I. Molecules. 2021;26(11):3076.
  • Vanichtanankul J, Taweechai S, Yuvaniyama J, et al. Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. ACS Chem Biol. 2011;6(9):905–911.
  • Tonelli M, Naesens L, Gazzarrini S, et al. Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus. Eur J Med Chem. 2017;135:467–478.
  • Gilbert IH. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes. Biochim Biophys Acta. 2002;1587(2–3):249–257.
  • Mills RM. Chagas disease: epidemiology and barriers to treatment. Am J Med. 2020;133(11):1262–1265.
  • Senkovich O, Pal B, Schormann N, et al. Trypanosoma cruzi genome encodes a pteridine reductase 2 protein. Mol Biochem Parasitol. 2003;127(1):89–92.
  • Senkovich O, Bhatia V, Garg N, et al. Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas‘ disease. Antimicrob Agents Chemother. 2005;49(8):3234–3238.
  • Senkovich O, Schormann N, Chattopadhyay D. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Acta Crystallogr D Biol Crystallogr. 2009;65(7):704–716.
  • Corona P, Gibellini F, Cavalli A, et al. Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors. J Med Chem. 2012;55(19):8318–8329.
  • Pöhner I, Quotadamo A, Panecka-Hofman J, et al. Multitarget, selective compound design yields potent inhibitors of a kinetoplastid pteridine reductase 1. J Med Chem. 2022;65(13):9011–9033.
  • PubMed [Internet]. [cited 2021 Nov 11]. Available from: https://pubmed.ncbi.nlm.nih.gov
  • Mpamhanga CP, Spinks D, Tulloch LB, et al. One scaffold, three binding modes: novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening. J Med Chem. 2009;52(14):4454–4465.
  • Tulloch LB, Martini VP, Iulek J, et al. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases. J Med Chem. 2010;53(1):221–229.
  • Spinks D, Ong HB, Mpamhanga CP, et al. Design, synthesis and biological evaluation of novel inhibitors of Trypanosoma brucei pteridine reductase 1. ChemMedChem. 2011;6(2):302–308.
  • Khalaf AI, Huggan JK, Suckling CJ, et al. Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1. J Med Chem. 2014;57(15):6479–6494.
  • Pöhner I. Computational approaches to drug design against the folate & biopterin pathways of parasites causing neglected tropical diseases [Internet]. Heidelberg University; 2020. [cited 2022 Jan 22]. Available from: http://www.ub.uni-heidelberg.de/archiv/28399
  • Borsari C, Luciani R, Pozzi C, et al. Profiling of flavonol derivatives for the development of antitrypanosomatidic drugs. J Med Chem. 2016;59(16):7598–7616.
  • Linciano P, Dawson A, Poehner I, et al. Exploiting the 2-amino-1,3,4-thiadiazole scaffold to inhibit Trypanosoma brucei pteridine reductase in support of early-stage drug discovery. ACS omega. 2017;2(9):5666–5683.
  • Linciano P, Pozzi C, Dello IL, et al. Enhancement of benzothiazoles as pteridine reductase-1 inhibitors for the treatment of trypanosomatidic infections. J Med Chem. 2019;62(8):3989–4012.
  • Linciano P, Cullia G, Borsari C, et al. Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. Eur J Med Chem. 2020;189:112047.
  • Landi G, Linciano P, Borsari C, et al. Structural insights into the development of cycloguanil derivatives as Trypanosoma brucei pteridine-reductase-1 inhibitors. ACS Infect Dis. 2019;5(7):1105–1114.
  • Landi G, Linciano P, Tassone G, et al. High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor. Acta Crystallogr Sect D Struct Biol. 2020;76(6):558–564.
  • Di Pisa F, Landi G, Dello Iacono L, et al. Chroman-4-one derivatives targeting pteridine reductase 1 and showing anti-parasitic activity. Molecules. 2017;22(3):426.
  • Kapil S, Singh PK, Kashyap A, et al. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR QSAR Environ Res. 2019;30(12):919–933.
  • Herrera-Acevedo C, Dos Santos Maia M, Ébvs C, et al. Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Mol Divers. 2021;25(4):2411–2427.
  • Bibi M, Qureshi NA, Sadiq A, et al. Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2,4-diaminopyrimidine-based analogues for the selective inhibition of L. major dihydrofolate reductase. Eur J Med Chem. 2021;210:112986.
  • Gourley DG, Schüttelkopf AW, Leonard GA, et al. Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nat Struct Biol. 2001;8(6):521–525.
  • Schormann N, Senkovich O, Walker K, et al. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function. Proteins. 2008;73(4):889–901.
  • Morales-Jadán D, Blanco-Salas J, Ruiz-Téllez T, et al. Three alkaloids from an Apocynaceae species, aspidosperma spruceanum as antileishmaniasis agents by in silico demo-case studies. Plants (Basel, Switzerland). 2020;9:E983.
  • Possart K, Herrmann FC, Jose J, et al. Sesquiterpene lactones with dual inhibitory activity against the pteridine reductase 1 and dihydrofolate reductase. Molecules. 2021;27(1):149.
  • Mizuno H, Usuki T. Ionic liquid-assisted extraction and isolation of cynaropicrin and cnicin from artichoke and blessed thistle. ChemistrySelect. 2018;3(6):1781–1786.
  • Herrmann FC, Sivakumar N, Jose J, et al. In silico identification and in vitro evaluation of natural inhibitors of leishmania major pteridine reductase I. Molecules. 2017;22(12):2166.
  • Kimuda MP, Laming D, Hoppe HC, et al. Identification of novel potential inhibitors of pteridine reductase 1 in Trypanosoma brucei via computational structure-based approaches and in vitro inhibition assays. Molecules. 2019;24(1):E142.
  • Ferrari S, Morandi F, Motiejunas D, et al. Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase. J Med Chem. 2011;54(1):211–221.
  • Guerrieri D, Ferrari S, Costi MP, et al. Biochemical effects of riluzole on Leishmania parasites. Exp Parasitol. 2013;133(3):250–254.
  • Juárez-Saldivar A, Schroeder M, Salentin S, et al. Computational drug repositioning for Chagas disease using protein-ligand interaction profiling. Int J Mol Sci. 2020;21(12):E4270.
  • Cocco L, Roth B, Temple C, et al. Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase. Arch Biochem Biophys. 1983;226(2):567–577.
  • Cocco L, Groff JP, Temple C, et al. Carbon-13 nuclear magnetic resonance study of protonation of methotrexate and aminopterin bound to dihydrofolate reductase. Biochemistry. 1981;20(14):3972–3978.
  • Varela MT, Fernandes JPS. Natural products: key prototypes to drug discovery against neglected diseases caused by trypanosomatids. Curr Med Chem. 2020;27(13):2133–2146.
  • Sistemat X. Sistemat X - Database of secondary metabolites [Internet]. [cited 2022 Jan 25]. Available from: https://sistematx.ufpb.br/
  • Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015;43(W1):W612–20.
  • Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(D1):D930–40.
  • PhytoLab. phyproof® Referenzsubstanzen | phytoLab [Internet]. [cited 2022 Jan 25]. Available from: https://phyproof.phytolab.com
  • Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757–1768.
  • Hatherley R, Brown DK, Musyoka TM, et al. SANCDB: a South African natural compound database. J Cheminform. 2015;7(1):29.
  • Diallo BN, Glenister M, Musyoka TM, et al. SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform. 2021;13(1):37.
  • Bellera CL, Sbaraglini ML, Talevi A. Modern approaches for the discovery of anti-infectious drugs for the treatment of neglected diseases. Curr Top Med Chem. 2018;18(5):369–381.
  • Kaiser M, Mäser P, Tadoori LP, et al. Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS One. 2015;10(8):e0135556.
  • Sharma VK, Kathuria D, Bharatam PV. Identification of selective LdDHFR inhibitors using quantum chemical and molecular modeling approach. J Biomol Struct Dyn. 2021 Apr;27:1–9.
  • Jedwabny W, Panecka-Hofman J, Dyguda-Kazimierowicz E, et al. Application of a simple quantum chemical approach to ligand fragment scoring for Trypanosoma brucei pteridine reductase 1 inhibition. J Comput Aided Mol Des. 2017;31(8):715–728.
  • Giedroyć-Piasecka W, Dyguda-Kazimierowicz E, Beker W, et al. Physical nature of fatty acid amide hydrolase interactions with its inhibitors: testing a simple nonempirical scoring model. J Phys Chem B. 2014;118(51):14727–14736.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide:  docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem. 2006;49(21):6177–6196.
  • Stank A, Kokh DB, Horn M, et al. TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res. 2017;45(W1):W325–30.
  • Istanbullu H, Bayraktar G, Akbaba H, et al. Design, synthesis, and in vitro biological evaluation of novel thiazolopyrimidine derivatives as antileishmanial compounds. Arch Pharm (Weinheim). 2020;353(8):e1900325.
  • Cardona HRA, Froes TQ, De SBC, et al. Thermal shift assays of marine-derived fungal metabolites from Aspergillus fischeri MMERU 23 against Leishmania major pteridine reductase 1 and molecular dynamics studies. J Biomol Struct Dyn. 2021 Aug;20:1–9.
  • Sharma VK, Bharatam PV. Identification of selective inhibitors of Ld DHFR enzyme using pharmacoinformatic methods. Journal of Computational Biology. 2021;28(1):43–59.
  • Wodak SJ, Paci E, V DN, et al. Allostery in its many disguises: from theory to applications. Structure. 2019;27(4):566–578.
  • Ho BK, Agard DA, Levitt M. Probing the flexibility of large conformational changes in protein structures through local perturbations. PLoS Comput Biol. 2009;5(4):e1000343.
  • Pantsar T, Poso A. Binding affinity via docking: fact and fiction. Molecules. 2018;23(8):1899.
  • Wilcken R, Zimmermann MO, Lange A, et al. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2013;56(4):1363–1388.
  • Choudhury SD. Nano-medicines a hope for chagas disease! Front Mol Biosci. 2021;8:655435.
  • Guerra RO, Do Carmo Neto JR, de Albuquerque Martins T, et al. Metallic nanoparticles: a new frontier in the fight against leishmaniasis. Curr Med Chem. 2022;29(26):4547–4573.
  • Prayag K, Surve DH, Paul AT, et al. Nanotechnological interventions for treatment of trypanosomiasis in humans and animals. Drug Deliv Transl Res. 2020;10(4):945–961.
  • Hall JPJ, Wang H, Barry JD. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLoS Pathog. 2013;9(7):e1003502.
  • Wiedemar N, Zwyer M, Zoltner M, Cal M, Field M C and Mäser P. (2019). Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in Trypanosoma brucei. FASEB BioAdvances, 1(10), 595–608. 10.1096/fba.2019-00033
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589.
  • Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871–876.
  • Wheeler RJ. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021;16(11):e0259871.
  • Tong AB, Burch JD, McKay D, et al. Could AlphaFold revolutionize chemical therapeutics? Nat Struct Mol Biol. 2021;28(10):771–772.
  • Mullard A. What does AlphaFold mean for drug discovery? Nat Rev Drug Discov. 2021;20(10):725–727.
  • Wang Z, Zheng L, Liu Y, et al. OnionNet-2: a convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells. Front Chem. 2021;9:753002.
  • King E, Aitchison E, Li H, et al. Recent developments in free energy calculations for drug discovery. Front Mol Biosci. 2021;8:712085.
  • Nunes-Alves A, Kokh DB, Wade RC. Recent progress in molecular simulation methods for drug binding kinetics. Curr Opin Struct Biol. 2020;64:126–133.
  • Spyrakis F, Ahmed MH, Bayden AS, et al. The roles of water in the protein matrix: a largely untapped resource for drug discovery. J Med Chem. 2017;60(16):6781–6827.
  • Matter H, Güssregen S. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Bioorg Med Chem Lett. 2018;28(14):2343–2352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.