400
Views
2
CrossRef citations to date
0
Altmetric
Review

The 1,2,3-triazole ‘all-in-one’ ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1209-1236 | Received 20 Jun 2022, Accepted 23 Sep 2022, Published online: 05 Oct 2022

References

  • Ram VJ, Sethi A, Nath M, et al. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles. India: Elsevier. 2019;149–478.
  • Jampilek J. Heterocycles in Medicinal Chemistry. Molecules. 2019;24(21):21.
  • Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among. U.S. FDA approved pharmaceuticals. J Med Chem. 2014; Dec 26;57(24):10257–10274.
  • Matin MM, Matin P, Rahman MR, et al. Triazoles and their derivatives: chemistry, synthesis, and therapeutic applications. Front Mol Biosci. 2022;9:864286.
  • Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem. 2020 Nov 1;205:112652.
  • Bonandi E, Christodoulou MS, Fumagalli G, et al. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today. 2017 Oct;22(10):1572–1581.
  • Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg Chem. 2017 Apr;71:30–54.
  • Hou J, Liu X, Shen J, et al. The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov. 2012 Jun;7 (6):489–501.
  • Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem. 2011 Feb;26(1):1–21.
  • Kolb HC, Finn MG, Sharpless KB, etal. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001Jun1;40(11):2004–2021.
  • Kumar S, Sharma B, Mehra V, et al. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem. 2021 Feb 15;212:113069.
  • Lauria A, Delisi R, Mingoia F, et al. 1,2,3-triazole in heterocyclic compounds, endowed with biological activity, through 1,3-Dipolar Cycloadditions. Eur J Org Chem. 2014;2014(16):3289–3306.
  • Massarotti A, Aprile S, Mercalli V, et al. Are 1,4- and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups? ChemMedChem. 2014 Nov 9;9(11):2497–2508.
  • Alam MM. 1,2,3-Triazole hybrids as anticancer agents: a review. Arch Pharm (Weinheim). 2022 Jan;355(1):e2100158.
  • Lal K, Yadav P. Recent Advancements in 1,4-Disubstituted 1H-1,2,3-Triazoles as Potential Anticancer Agents. Anticancer Agents Med Chem. 2018;18(1):21–37.
  • Liang T, Sun X, Li W, et al. 1,2,3-triazole-containing compounds as anti-lung cancer agents: current developments, mechanisms of action, and structure-activity relationship. Front Pharmacol. 2021;12:661173.
  • Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: current developments, action mechanisms and structure-activity relationships. Eur J Med Chem. 2019 Dec 1;183:111700.
  • Fallah Z, Tajbakhsha M, Alikhanib M, et al. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struc. 2022;1255:132469.
  • Ayati A, Emami S, Foroumadi A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur J Med Chem. 2016 Feb;15(109):380–392.
  • Song MX, Deng XQ. Recent developments on triazole nucleus in anticonvulsant compounds: a review. J Enzyme Inhib Med Chem. 2018 Dec;33(1):453–478.
  • Feng LS, Zheng MJ, Zhao F, et al. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim). 2021 Jan;354(1):e2000163.
  • Gondru R, Kanugala S, Raj S, et al. 1,2,3-triazole-thiazole hybrids: synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg Med Chem Lett. 2021 Feb 1;33:127746.
  • Xu Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem. 2020 Nov 15;206:112686.
  • Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem. 2019 Apr 15;168:357–372.
  • Nural Y, Ozdemir S, Doluca O, et al. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorg Chem. 2020;105:104441.
  • Nural Y, Ozdemir S, Yalcin MS, et al. synthesis, biological evaluation, molecular docking, and acid dissociation constant of new bis-1,2,3-triazole compounds. Chem Sel. 2021;6(28):6994–7001.
  • Keri RS, Patil SA, Budagumpi S, et al. Triazole: a Promising Antitubercular Agent. Chem Biol Drug Des. 2015 Oct;86(4):410–423.
  • Zhang S, Xu Z, Gao C, et al. Triazole derivatives and their anti-tubercular activity. Eur J Med Chem. 2017 Sep;29(138):501–513.
  • Chu XM, Wang C, Wang WL, et al. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem. 2019 Mar;15(166):206–223.
  • Yang YJ, Rasmussen BA, Shlaes DM. Class A beta-lactamases - enzyme-inhibitor interactions and resistance. Pharmacol Ther. 1999 Aug;83(2):141–151.
  • Dunn GL, Hoover JR, Berges DA, et al. Orally active 7-phenylglycyl cephalosporins. Structure-activity studies related to cefatrizine (SK&F 60771). J Antibiot (Tokyo). 1976 Jan;29(1):65–80.
  • Zhou J, Bhattacharjee A, Chen S, et al. Design at the atomic level: design of biaryloxazolidinones as potent orally active antibiotics. Bioorg Med Chem Lett. 2008 Dec 1;18(23):6175–6178.
  • Hakimian S, Cheng-Hakimian A, Anderson GD, et al. Rufinamide: a new anti-epileptic medication. Expert Opin Pharmacother. 2007 Aug 8;8(12):1931–1940.
  • Jacobson LH, Callander GE, Hoyer D. Suvorexant for the treatment of insomnia. Expert Rev Clin Pharmacol. 2014 Nov;7(6):711–730.
  • Abboud JLM, Foces-Foces C, Notario R, et al. Basicity of N-H- and N-methyl-1,2,3-triazoles in the gas phase, in solution, and in the solid state - An experimental and theoretical study. Eur J Org Chem. 2001 Aug;2001(16):3013–3024.
  • Eicher T, Hauptmann S. The Chemistry of Heterocycles: structure, Reactions, Syntheses, and Applications. Stuttgart. Germany: Thieme Verlag; 1996.
  • Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, et al. Biotransformation reactions of five-membered aromatic heterocyclic rings. Chem Res Toxicol. 2002 Mar;15(3):269–299.
  • Tron GC, Pirali T, Billington RA, et al. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev. 2008 Mar;28(2):278–308.
  • Doiron JE, Le CA, Bacsa J, et al. Structural Consequences of the 1,2,3-Triazole as an Amide Bioisostere in Analogues of the Cystic Fibrosis Drugs VX-809 and VX-770. ChemMedChem. 2020 Sep 16;15(18):1720–1730.
  • Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem. 2010 Jul 22;53(14):5061–5084.
  • Mindt TL, Struthers H, Brans L, et al. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J Am Chem Soc. 2006 Nov 29;128(47):15096–15097.
  • Urankar D, Pinter B, Pevec A, et al. Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorg Chem. 2010 Jun 7;49(11):4820–4829.
  • St Jean DJ, Fotsch C. Mitigating heterocycle metabolism in drug discovery. J Med Chem. 2012Jul12;55(13):6002–6020.
  • Agrahari AK, Bose P, Jaiswal MK, et al. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem Rev. 2021 Jul 14;121(13):7638–7956.
  • John J, Thomas J, Dehaen W. Organocatalytic routes toward substituted 1,2,3-triazoles. Chem Commun (Camb). 2015 Jul 11;51(54):10797–10806.
  • Thomas J, Jana S, John J, et al. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem Commun (Camb). 2016 Feb 18;52(14):2885–2888.
  • Wei F, Wang W, Ma Y, et al. Regioselective synthesis of multisubstituted 1,2,3-triazoles: moving beyond the copper-catalyzed azide-alkyne cycloaddition. Chem Commun (Camb). 2016 Dec 6;52(99):14188–14199.
  • Taiariol L, Chaix C, Farre C, et al. Click and Bioorthogonal Chemistry: the Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev. 2022 Jan 12;122(1):340–384.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674.
  • Wallace TA, Martin DN, Ambs S. Interactions among genes, tumor biology and the environment in cancer health disparities: examining the evidence on a national and global scale. Carcinogenesis. 2011 Aug;32(8):1107–1121.
  • Ihmaid SK, Aljuhani A, Alsehli M, et al. Discovery of triaromatic flexible agents bearing 1,2,3-Triazole with selective and potent anti-breast cancer activity and CDK9 inhibition supported by molecular dynamics. J Mol Struc. 2022;1249:131568.
  • Sahin I, Çeşme M, Özgeris FB, et al. Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: biological evaluation, in silico molecular docking and ADME screening. J Mol Struc. 2022;1247. 131344.
  • Abdel-Hafez GA, Mohamed AI, Youssef AF, et al. Synthesis, computational study and biological evaluation of 9-acridinyl and 1-coumarinyl-1,2,3-triazole-4-yl derivatives as topoisomerase II inhibitors. J Enzyme Inhib Med Chem. 2022 Dec;37(1):502–513.
  • Sun G, Mao L, Deng W, et al. Discovery of a Series of 1,2,3-Triazole-Containing Erlotinib Derivatives With Potent Anti-Tumor Activities Against Non-Small Cell Lung Cancer. Front Chem. 2021;9:789030.
  • Deng P, Sun G, Zhao J, et al. Synthesis and antitumor activity of erlotinib derivatives linked with 1,2,3-triazole. Front Pharmacol. 2021;12:793905.
  • Bieganski P, Godel M, Riganti C, et al. Click ferrocenyl-erlotinib conjugates active against erlotinib-resistant non-small cell lung cancer cells in vitro. Bioorg Chem. 2022;119:105514.
  • Oubella A, Taia A, Byadi S, et al. Chemical profiling, cytotoxic activities through apoptosis induction in human fibrosarcoma and carcinoma cells, and molecular docking of some 1,2,3-triazole-isoxazoline hybrids using the eugenol as a precursors. J Biomol Struct Dyn. 2022;17:1–13.
  • Ye J, Mao L, Xie L, et al. Discovery of a Series of Theophylline Derivatives Containing 1,2,3-Triazole for Treatment of Non-Small Cell Lung Cancer. Front Pharmacol. 2021;12:753676.
  • Hrimla M, Oubella A, Laamari Y, et al. Click Synthesis, Anticancer Activity, and Molecular Docking Investigation of some Functional 1,2,3-triazole Derivatives. Biointerf Res Appl Chem. 2022;12(6):7633–7667.
  • Alam MM, Malebari AM, Syed N, et al. Design, synthesis and molecular docking studies of thymol based 1,2,3-triazole hybrids as thymidylate synthase inhibitors and apoptosis inducers against breast cancer cells. Bioorg Med Chem. 2021 May 15;38:116136.
  • Xu M, Zhao C, Zhu B, et al. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. J Med Chem. 2021 Feb 25;64(4):2010–2023.
  • Kasemsuk T, Saehlim N, Arsakhant P, et al. A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells. Bioorg Med Chem. 2021 1;Jan(29):115886.
  • Feng Z, Chen A, Shi J, et al. Design, synthesis, and biological activity evaluation of a series of novel sulfonamide derivatives as BRD4 inhibitors against acute myeloid leukemia. Bioorg Chem. 2021;111:104849.
  • Carlson AS, Cui H, Divakaran A, et al. Systematically Mitigating the p38alpha Activity of Triazole-based BET Inhibitors. ACS Med Chem Lett. 2019 Sep 12;10(9):1296–1301.
  • Sharp PP, Garnier JM, Hatfaludi T, et al. Design, Synthesis, and Biological Activity of 1,2,3-Triazolobenzodiazepine BET Bromodomain Inhibitors. ACS Med Chem Lett. 2017 Dec 14;8(12):1298–1303.
  • Cui H, Carlson AS, Schleiff MA, et al. 4-Methyl-1,2,3-Triazoles as N-Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity. J Med Chem. 2021 Jul 22;64(14):10497–10511.
  • Lee CI, Liao CB, Chen CS, et al. Design and synthesis of 4-anilinoquinazolines as Raf kinase inhibitors. Part 1. Selective B-Raf/B-Raf(V600E) and potent EGFR/VEGFR2 inhibitory 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines. Bioorg Chem. 2021;109:104715.
  • Nunes PSG, da Silva G, Nascimento S, et al. Synthesis, biological evaluation and molecular docking studies of novel 1,2,3-triazole-quinazolines as antiproliferative agents displaying ERK inhibitory activity. Bioorg Chem. 2021;113:104982.
  • El-Sayed WA, Alminderej FM, Mounier MM, et al. Novel 1,2,3-Triazole-Coumarin Hybrid Glycosides and Their Tetrazolyl Analogues: Design, Anticancer Evaluation and Molecular Docking Targeting EGFR, VEGFR-2 and CDK-2. Molecules. 2022 Mar;27(7):2047.
  • Khattab RR, Alshamari AK, Hassan AA, et al. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J Enzyme Inhib Med Chem. 2021 Dec;36(1):504–516.
  • Zuo Z, Liu X, Qian X, et al. Bifunctional naphtho[2,3-d][1,2,3]triazole-4,9-dione compounds exhibit antitumor effects in vitro and in vivo by inhibiting dihydroorotate dehydrogenase and inducing reactive oxygen species production. J Med Chem. 2020 Jul 23;63(14):7633–7652.
  • Pan S, Zhou Y, Wang Q, et al. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem. 2020 Dec 1;207:112703.
  • Yang JJ, Yu WW, Hu LL, et al. Discovery and Characterization of 1H-1,2,3-Triazole Derivatives as Novel Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem. 2020 Jan 23;63(2):569–590.
  • Dheer D, Behera C, Singh D, et al. Design, synthesis and comparative analysis of triphenyl-1,2,3-triazoles as anti-proliferative agents. Eur J Med Chem. 2020 Dec 1;207:112813.
  • Elzahhar PA, Abd E, Wahab SM, et al. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem. 2020 Aug;15(200):112439.
  • Ashour HF, Abou-Zeid LA, El-Sayed MA, et al. 1,2,3-Triazole-Chalcone hybrids: synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. Eur J Med Chem. 2020 Mar 1;189:112062.
  • Ince T, Serttas R, Demir B, et al. Polysubstituted pyrrolidines linked to 1,2,3-triazoles: synthesis, crystal structure, DFT studies, acid dissociation constant, drug-likeness, and anti-proliferative activity. J Mol Struct. 2020;5:1217.
  • Pan X, Liu N, Liu Y, et al. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. European. J Med Chem. 2022 2022/08/05/;238:114425.
  • Pan X, Liu N, Zhang Q, et al. Design, synthesis, and biological evaluation of novel Bcr-AblT315I inhibitors incorporating amino acids as flexible linker. Bioorg Med Chem. 2021 2021/10/15/;48:116398.
  • Ivasiv V, Albertini C, Goncalves AE, et al. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr Top Med Chem. 2019;19(19):1694–1711.
  • Viegas-Junior C, Danuello A, da Silva Bolzani V, et al. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007;14(17):1829–1852.
  • Kraljevic TG, Harej A, Sedic M, et al. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem. 2016 Nov 29;124:794–808.
  • Lipeeva AV, Zakharov DO, Burova LG, et al. Design, synthesis and antibacterial activity of coumarin-1,2,3-triazole hybrids obtained from natural furocoumarin peucedanin. Molecules. 2019 Jun 5;24:11.
  • Gatadi S, Madhavi YV, Chopra S, et al. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem. 2019;92:103252.
  • Gatadi S, Gour J, Shukla M, et al. Synthesis of 1,2,3-triazole linked 4(3H)-Quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus. Eur J Med Chem. 2018 Sep 5;157:1056–1067.
  • Sharma MK, Parashar S, Chahal M, et al. Antimicrobial and in-silico evaluation of novel chalcone and amide-linke d 1,4-disubstitute d 1,2,3 triazoles. J Mol Struct. 2022Jun;5(1257):132632.
  • Yadav M, Lal K, Kumar A, et al. Indole-chalcone linked 1,2,3-triazole hybrids: facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents. J Mol Struct. 2022;5:1261.
  • Horne WS, Yadav MK, Stout CD, et al. Heterocyclic peptide backbone modifications in an alpha-helical coiled coil. J Am Chem Soc. 2004 Dec 1;126(47):15366–15367.
  • Nehra N, Tittal RK, Ghule VD. 1,2,3-Triazoles of 8-Hydroxyquinoline and HBT: synthesis and Studies (DNA Binding, Antimicrobial, Molecular Docking, ADME, and DFT). ACS Omega. 2021 Oct 19;6(41):27089–27100.
  • Poonia N, Lal K, Kumar A, et al. Urea-thiazole/benzothiazole hybrids with a triazole linker: synthesis, antimicrobial potential, pharmacokinetic profile and in silico mechanistic studies. Mol Divers. 2021. DOI:10.1007/s11030-021-10336-x.
  • Bitla S, Gayatri AA, Puchakayala MR, et al. Design and synthesis, biological evaluation of bis-(1,2,3- and 1,2,4)-triazole derivatives as potential antimicrobial and antifungal agents. Bioorg Med Chem Lett. 2021 Jun 1;41:128004.
  • El Sawy MA, Elshatanofy MM, El Kilany Y, et al. Novel hybrid 1,2,4- and 1,2,3-triazoles targeting mycobacterium tuberculosis enoyl acyl carrier protein reductase (inha): design, synthesis, and molecular docking. Int J Mol Sci 2022 Apr; 23(9): 4706.
  • Nural Y, Ozdemir S, Yalcin MS, et al. New bis- and tetrakis-1,2,3-triazole derivatives: synthesis, DNA cleavage, molecular docking, antimicrobial, antioxidant activity and acid dissociation constants. Bioorg Med Chem Lett. 2022 Jan 1;55:128453.
  • Teng Y, Qin Y, Song D, et al. A novel series of 11-O-carbamoyl-3-O-descladinosyl clarithromycin derivatives bearing 1,2,3-triazole group: design, synthesis and antibacterial evaluation. Bioorg Med Chem Lett. 2020 Jan 15;30(2):126850.
  • Qin Y, Xu L, Teng Y, et al. Design, synthesis and antibacterial evaluation of novel 3-O-substituted 15-membered azalides possessing 1,2,3-triazole side chains. Bioorg Med Chem Lett. 2021 Oct 1;49:128330.
  • Malik M, Mustaev A, Schwanz HA, et al. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Res. 2016 Apr 20;44(7):3304–3316.
  • Agarwal A, Singh P, Maurya A, et al. Ciprofloxacin-Tethered 1,2,3-triazole conjugates: new quinolone family compounds to upgrade our antiquated approach against bacterial infections. ACS Omega. 2022 Jan 25;7(3):2725–2736.
  • Gao F, Ye L, Kong F, et al. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg Chem. 2019;91:103162.
  • Fan D, Wang B, Stelitano G, et al. Structural and activity relationships of 6-sulfonyl-8-nitrobenzothiazinones as antitubercular agents. J Med Chem. 2021 Oct 14;64(19):14526–14539.
  • Dharuman S, Wallace MJ, Reeve SM , et al. Synthesis and Structure-Activity Relationship of Thioacetamide-Triazoles against Escherichia coli. Molecules. 2022 Feb;27(5): 1518.
  • Meirer K, Steinhilber D, Proschak E. Inhibitors of the arachidonic acid cascade: interfering with multiple pathways. Basic Clin Pharmacol Toxicol. 2014 Jan;114(1):83–91.
  • Boshra AN, Hhm A-A, Mohammed AF, et al. Click chemistry synthesis, biological evaluation and docking study of some novel 2′-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorg Chem. 2020;95:103505.
  • Felipe JL, Cassamale TB, Lourenço LD, et al. Anti-inflammatory, ulcerogenic and platelet activation evaluation of novel 1,4-diaryl-1,2,3-triazole neolignan-celecoxib hybrids. Bioorg Chem. 20222022/02/01/;119:105485.
  • Sun CP, Zhang XY, Morisseau C, et al. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J Med Chem. 2021 Jan 14;64(1):184–215.
  • Rezaee E, Shadzad HR, Nazari M, et al. Design, synthesis, and biological evaluation of some 1,2,3-triazole derivatives as novel amide-based inhibitors of soluble epoxide hydrolase. Med Chem Res. 20212021/09/01;30(9):1738–1746.
  • Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019 Nov;20(23):6008.
  • Nural Y, Acar I, Yetkin D, et al. Synthesis of novel immunomodulatory 1,4-disubstituted bis-1,2,3-triazoles by using click chemistry and their intracellular mechanism of action. Bioorg Med Chem Lett. 2022;69:128800.
  • Huang A-L, Zhang Y-L, Ding H-W, et al. Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives. Int Immunopharmacol. 2018;61:82–91.
  • Zheng Y, Zhang Y, Li Z, et al. Design and synthesis of 7-O-1,2,3-triazole hesperetin derivatives to relieve inflammation of acute liver injury in mice. Eur J Med Chem. 2021;213:113162.
  • Sahu A, Das D, Sahu P, et al., Bioisosteric replacement of amide group with 1,2,3-triazoles in acetaminophen addresses reactive oxygen species-mediated hepatotoxic insult in wistar albino rats. Chem Res Toxicol. 2020;33(2): 522–535.
  • Adamson CS, Chibale K, Goss RJM, et al. Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev. 2021 Mar 21;50(6):3647–3655.
  • Organization WH. Data on the size of the HIV/AIDS epidemic. 2020. [cited 2022 Mar 19]. Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-deaths-due-to-hiv-aids
  • El-Sebaey SA. Recent Advances in 1,2,4-Triazole Scaffolds as Antiviral Agents. Chemistryselect. 2020 Oct 8;5(37):11654–11680.
  • Kharb R, Shahar Yar M, Sharma PC. Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev Med Chem. 2011 Jan;11(1):84–96.
  • Malim MH, Bieniasz PD. HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med. 2012 May;2(5):a006940.
  • Ali A, Wang J, Nathans RS, et al. Synthesis and structure-activity relationship studies of HIV-1 virion infectivity factor (Vif) inhibitors that block viral replication. ChemMedChem. 2012 7; Jul(7): 1217–1229.
  • Mohammed I, Kummetha IR, Singh G, et al. 1,2,3-Triazoles as Amide Bioisosteres: discovery of a New Class of Potent HIV-1 Vif Antagonists. J Med Chem. 2016 Aug 25;59(16):7677–7682.
  • Le Sage V, Mouland AJ, Valiente-Echeverria F. Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res. 2014 Nov 26;193:116–129.
  • Wu G, Zalloum WA, Meuser ME, et al. Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. Eur J Med Chem. 2018 Oct 5;158:478–492.
  • Sun L, Huang T, Dick A, et al. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur J Med Chem. 2020 Mar 15;190:112085.
  • Kang D, Feng D, Jing L, et al. In situ click chemistry-based rapid discovery of novel HIV-1 NNRTIs by exploiting the hydrophobic channel and tolerant regions of NNIBP. Eur J Med Chem. 2020 May 1;193:112237.
  • Meier-Stephenson V, Mrozowich T, Pham M, et al. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev. 2018 Apr;34(1):3–32.
  • Garbelli A, Radi M, Falchi F, et al. Targeting the human DEAD-box polypeptide 3 (DDX3) RNA helicase as a novel strategy to inhibit viral replication. Curr Med Chem. 2011;18(20):3015–3027.
  • Brai A, Fazi R, Tintori C, et al. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5388–5393.
  • Fazi R, Tintori C, Brai A, et al. Homology Model-Based Virtual Screening for the Identification of Human Helicase DDX3 Inhibitors. J Chem Inf Model. 2015 Nov 23;55(11):2443–2454.
  • Brai A, Martelli F, Riva V, et al. DDX3X Helicase Inhibitors as a New Strategy To Fight the West Nile Virus Infection. J Med Chem. 2019 Mar 14;62(5):2333–2347.
  • Brai A, Riva V, Saladini F, et al. DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. Eur J Med Chem. 2020 Aug 15;200:112319.
  • Marvadi SK, Krishna VS, Sinegubova EO, et al. 5-Chloro-2-thiophenyl-1,2,3-triazolylmethyldihydroquinolines as dual inhibitors of Mycobacterium tuberculosis and influenza virus: synthesis and evaluation. Bioorg Med Chem Lett. 2019 Sep 15;29(18):2664–2669.
  • Vanderlinden E, Naesens L. Emerging antiviral strategies to interfere with influenza virus entry. Med Res Rev. 2014 Mar;34(2):301–339.
  • Yu M, Si L, Wang Y, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses. J Med Chem. 2014 Dec 11;57(23):10058–10071.
  • Su Y, Meng L, Sun J, et al. Design, synthesis of oleanolic acid-saccharide conjugates using click chemistry methodology and study of their anti-influenza activity. Eur J Med Chem. 2019 Nov;15(182):111622.
  • Ju H, Xiu S, Ding X, et al. Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. Eur J Med Chem. 2020 Feb 1;187:111940.
  • Kaoukabi H, Kabri Y, Curti C, et al. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur J Med Chem. 2018 Jul 15;155:772–781.
  • Macan AM, Harej A, Cazin I, et al. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur J Med Chem. 2019 Dec 15;184:111739.
  • Yu J, Jia H, Guo X, et al. Design, synthesis, and evaluation of novel heteroaryldihydropyrimidine derivatives as non-nucleoside hepatitis B virus inhibitors by exploring the solvent-exposed region. Chem Biol Drug Des. 2020 Jun;95(6):567–583.
  • Zhang H, Zheng X, Li J, et al. Flavonoid-triazolyl hybrids as potential anti-hepatitis C virus agents: synthesis and biological evaluation. Eur J Med Chem. 2021 Jun;5(218):113395.
  • Ni Y, Lempp FA, Mehrle S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014 Apr;146(4):1070–1083.
  • Yan H, Peng B, Liu Y, et al. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol. 2014 Mar;88(6):3273–3284.
  • Liu Y, Zhang L, Yan H, et al. Design of dimeric bile acid derivatives as potent and selective human NTCP Inhibitors. J Med Chem. 2021 May 13;64(9):5973–6007.
  • Seliem IA, Panda SS, Girgis AS, et al. New quinoline-triazole conjugates: synthesis, and antiviral properties against SARS-CoV-2. Bioorg Chem. 2021 Sep;114:105117.
  • Stevaert A, Krasniqi B, Van Loy B, et al. Betulonic acid derivatives interfering with human coronavirus 229e replication via the nsp15 endoribonuclease. J Med Chem. 2021 May 13;64(9):5632–5644.
  • Brand S, Ko EJ, Viayna E, et al. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi. J Med Chem. 2017;60(17):7284–7299.
  • Horn C-M, Aucamp J, Smit FJ, et al. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Med Chem Res. 2020;29(8):1387–1399.
  • Huang G, Solano CM, Melendez J, et al. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem. 2021;209:112889.
  • Avula SK, Khan A, Rehman NU, et al. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg Chem. 2018;81:98–106.
  • Sharma V, Kumar R, Bua S, et al. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorg Chem. 2019;85:198–208.
  • Avula SK, Khan A, Halim SA, et al. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: a new class of α-glucosidase inhibitors. Bioorg Chem. 2019;91:103182.
  • Kumar R, Vats L, Bua S, et al. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545–551.
  • Avula SK, Khan M, Halim SA, et al. Synthesis of New 1H-1,2,3-Triazole Analogs in Aqueous Medium via “Click” Chemistry: a Novel Class of Potential Carbonic Anhydrase-II Inhibitors [Original Research]. Front Chem. 2021;9. DOI: 10.3389/fchem.2021.642614.
  • Anil DA, Aydin BO, Demir Y, et al. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct. 2022;1257:132613.
  • Srivastava S, Ahmad R, Khare SK. Alzheimer’s disease and its treatment by different approaches: a review. Eur J Med Chem. 2021;216:113320.
  • Karimi Askarani H, Iraji A, Rastegari A, et al. Design and synthesis of multi-target directed 1,2,3-triazole-dimethylaminoacryloyl-chromenone derivatives with potential use in Alzheimer’s disease. BMC Chemistry. 2020;14(1):64.
  • Kaur Gulati H, Choudhary S, Kumar N, et al. Design, Synthesis, biological investigations and molecular interactions of triazole linked tacrine glycoconjugates as Acetylcholinesterase inhibitors with reduced hepatotoxicity. Bioorg Chem. 2022;118:105479.
  • Thomas D, Kanefendt F, Schwers S, et al. First evaluation of the safety, pharmacokinetics, and pharmacodynamics of BAY 2433334, a small molecule targeting coagulation factor XIa. J Thromb Haemost. 2021;19(10):2407–2416.
  • Yang W, Wang Y, Lai A, et al., Discovery of a high affinity, orally bioavailable macrocyclic fxia inhibitor with antithrombotic activity in preclinical species. J Med Chem. 2020; 63(13): 7226–7242.
  • Dilger AK, Pabbisetty KB, Corte JR, et al., Discovery of milvexian, a high-affinity, orally bioavailable inhibitor of factor xia in clinical studies for antithrombotic therapy. J Med Chem. 2022;65(3): 1770–1785.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.