216
Views
0
CrossRef citations to date
0
Altmetric
Review

Latest models for the discovery and development of rheumatoid arthritis drugs

, , , , &
Pages 1261-1278 | Received 11 Feb 2022, Accepted 29 Sep 2022, Published online: 12 Oct 2022

References

  • Smolen JS, Aletaha D, McInnes IB.Rheumatoid arthritis.Lancet.2016;388(10055):2023–2038; Epub 2016/ 10/30. PubMed PMID: 27156434;
  • Aletaha D, Smolen JS.Diagnosis and Management of Rheumatoid Arthritis: a Review.Jama.2018;320(13):1360–1372; Epub 2018/ 10/05. PubMed PMID: 30285183;
  • Myasoedova E, Crowson CS, Kremers HM, et al. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheumatism. 2010;62(6):1576–1582.
  • Gabriel SE.The epidemiology of rheumatoid arthritis.Rheum Dis Clin North Am.2001;27(2):269–281; Epub 2001/ 06/09. PubMed PMID: 11396092;
  • McInnes IB, Schett G.The pathogenesis of rheumatoid arthritis.N Engl J Med.2011;365(23):2205–2219; Epub 2011/ 12/14. PubMed PMID: 22150039;
  • Das S, Padhan P.An Overview of the Extraarticular Involvement in Rheumatoid Arthritis and its Management.J Pharmacol Pharmacother.2017;8(3):81–86; Epub 2017/ 10/31. PubMed PMID: 29081614; PubMed Central PMCID: PMC5642136;
  • Lin Y-J, Anzaghe M, Schülke S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells. 2020;9(4):880. PubMed PMID: 32260219.
  • Giannini D, Antonucci M, Petrelli F, et al. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2020;38(3):387–397. Epub 20200423. PubMed PMID: 32324123.
  • Deane KD, Demoruelle MK, Kelmenson LB, et al.Genetic and environmental risk factors for rheumatoid arthritis.Best Pract Res Clin Rheumatol.2017;31(1):3–18; Epub 2017/ 09/18. PubMed PMID: 29221595;
  • MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43(1):30–37. PubMed PMID: 10643697.
  • Ham S, Bae J-B, Lee S, et al. Epigenetic analysis in rheumatoid arthritis synoviocytes. Exp Mol Med. 2019;51(2):1–13.
  • Zhou S, Huang G, Chen G. The antagonistic activity of H1 receptor antagonists as medicinal foods. Trends Food SciTechnol. 2020;105:1–16.
  • Zhou S, Huang G, Chen G, et al. Synthesis, activity and mechanism for double-ring conjugated enones. Bioorg Med Chem Lett. 2021;49:128315.
  • Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–381. . PubMed PMID: 24390342; PubMed Central PMCID: PMC3944098
  • Gonzalez-Gay MA, Garcia-Porrua C, Hajeer AH. Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum. 2002;31(6):355–360. PubMed PMID: 12077707.
  • Zhou S, Zou H, Huang G, et al. Design, synthesis and anti-rheumatoid arthritis evaluation of double-ring conjugated enones. Bioorg Chem. 2021;109:104701.
  • Romo-García MF, Bastian Y, Zapata-Zuñiga M, et al. Identification of putative miRNA biomarkers in early rheumatoid arthritis by genome-wide microarray profiling: a pilot study. Gene. 2019;720:144081. Epub 20190829. .
  • Liu C, Pan A, Chen X, et al.MiR-5571-3p and miR-135b-5p, derived from analyses of microRNA profile sequencing, correlate with increased disease risk and activity of rheumatoid arthritis.Clin Rheumatol.2019;38(6):1753–1765; Epub 20190201. PubMed PMID: 30707326;
  • Meng M, Liu H, Chen S, et al. Methylation of H3K27 and H3K4 in key gene promoter regions of thymus in RA mice is involved in the abnormal development and differentiation of iNKT cells. Immunogenetics. 2019;71(7):489–499. . PubMed PMID: 31297569
  • Scott DL, Wolfe F, Huizinga TW.Rheumatoid arthritis.Lancet.2010;376(9746):1094–1108; Epub 2010/ 09/28. PubMed PMID: 20870100;
  • Derksen VFAM, Huizinga TWJ, van der Woude D.The role of autoantibodies in the pathophysiology of rheumatoid arthritis.Semin Immunopathol.2017;39(4):437–446; Epub 20170427. PubMed PMID: 28451788; PubMed Central PMCID: PMC5486798;
  • Schellekens GA, Visser H, de Jong BA, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 2000;43(1):155–163. PubMed PMID: 10643712.
  • Wang S, Wang Y.Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis.Biochim Biophys Acta.2013;1829(10):1126–1135; Epub 20130713. PubMed PMID: 23860259; PubMed Central PMCID: PMC3775966;
  • Kurowska W, Kuca-Warnawin EH, Radzikowska A, et al.The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis.Cent Eur J Immunol.2017;42(4):390–398; Epub 20171230. PubMed PMID: 29472818; PubMed Central PMCID: PMC5820977.;
  • Kallberg H, Padyukov L, Plenge RM, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet. 2007;80(5):867–875. . PubMed PMID: 17436241; PubMed Central PMCID: PMC1852748
  • Padyukov L, Seielstad M, Ong RT, et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis. 2011;70(2):259–265. . PubMed PMID: 21156761; PubMed Central PMCID: PMC3015094
  • Eyre S, Bowes J, Diogo D, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336–1340. . PubMed PMID: 23143596; PubMed Central PMCID: PMC3605761.
  • Makrygiannakis D, Hermansson M, Ulfgren AK, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis. 2008;67(10):1488–1492. . PubMed PMID: 18413445
  • Chemin K, Gerstner C, Malmström V. Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation-Lessons From Rheumatoid Arthritis. Front Immunol. 2019;10:353.
  • Ryu S, Lee JH, Kim SI.Kim SI. IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes.Clin Rheumatol.2006;25(1):16–20; Epub 20050915. PubMed PMID: 16163444;
  • Zhou S, Huang G. Some important inhibitors and mechanisms of rheumatoid arthritis. Chem Biol Drug Des. 2021; Epub 20211223. doi: 10.1111/cbdd.14015. PubMed PMID: 34942050.
  • Redlich K, Smolen JS.Inflammatory bone loss: pathogenesis and therapeutic intervention.Nat Rev Drug Discov.2012;11(3):234–250; Epub 20120301. PubMed PMID: 22378270;
  • Li X, Kim KW, Cho ML, et al. IL-23 induces receptor activator of NF-kappaB ligand expression in fibroblast-like synoviocytes via STAT3 and NF-kappaB signal pathways. Immunol Lett. 2010;127(2):100–107. . PubMed PMID: 19900478
  • Mateen S, Zafar A, Moin S, et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta. 2016;455:161–171.
  • Rivellese F, Humby F, Bugatti S, et al. B Cell Synovitis and Clinical Phenotypes in Rheumatoid Arthritis: relationship to Disease Stages and Drug Exposure. Arthritis Rheumatol. 2020;72(5):714–725. . PubMed PMID: 31785084; PubMed Central PMCID: PMC7217046
  • Testa D, Calvacchi S, Petrelli F, et al. One year in review 2021: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2021;39(3):445–452. Epub 20210521. PubMed PMID: 34018918.
  • Aletaha D, Neogi T, Silman AJ, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581. . PubMed PMID: 20872595
  • Zhou S, Zou H, Chen G, et al. Synthesis and Biological Activities of Chemical Drugs for the Treatment of Rheumatoid Arthritis. Top Curr Chem (Cham). 2019;377(5):28. Epub 20190928. .
  • Smolen JS, Landewe RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685–699. . PubMed PMID: 31969328
  • Graudal N, Hubeck-Graudal T, Faurschou M, et al. Combination Therapy With and Without Tumor Necrosis Factor Inhibitors in Rheumatoid Arthritis: a Meta-Analysis of Randomized Trials. Arthritis Care Res (Hoboken). 2015;67(11):1487–1495.
  • Walsh NC, Kenney LL, Jangalwe S, et al. Humanized Mouse Models of Clinical Disease. Annu Rev Pathol. 2017;12(1):187–215. . PubMed PMID: 27959627; PubMed Central PMCID: PMC5280554
  • Grötsch B, Bozec A, Schett G. In Vivo Models of Rheumatoid Arthritis. Methods Mol Biol. 2019;1914:269–280. PubMed PMID: 30729470.
  • Damerau A, Gaber T.Modeling Rheumatoid Arthritis In Vitro: from Experimental Feasibility to Physiological Proximity.Int J Mol Sci.2020;21(21):7916; Epub 20201025. PubMed PMID: 33113770; PubMed Central PMCID: PMC7663779;
  • Asquith DL, Miller AM, McInnes IB, et al. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39(8):2040–2044. PubMed PMID: 19672892.
  • Choudhary N, Bhatt LK, Prabhavalkar KS.Experimental animal models for rheumatoid arthritis.Immunopharmacol Immunotoxicol.2018;40(3):193–200; Epub 20180212. PubMed PMID: 29433367.;
  • Perrin S. Preclinical research: make mouse studies work. Nature. 2014;507(7493):423–425. PubMed PMID: 24678540.
  • Schinnerling K, Rosas C, Soto L, et al. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol. 2019;10:203. PubMed PMID: 30837986.
  • Lubberts E, Koenders MI, Oppers-Walgreen B, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004;50(2):650–659. PubMed PMID: 14872510.
  • Joosten LA, Helsen MM, van de Loo FA, et al. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1Ra. Arthritis Rheum. 1996;39(5):797–809. PubMed PMID: 8639177.
  • Pavelka K, Chon Y, Newmark R, et al.A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate.J Rheumatol.2015;42(6):912–919; Epub 20150415. PubMed PMID: 25877498;
  • Gabay C, Lamacchia C, Palmer G.IL-1 pathways in inflammation and human diseases.Nat Rev Rheumatol.2010;6(4):232–241; Epub 20100223. PubMed PMID: 20177398.;
  • Cassotta M, Pistollato F, Battino M.Rheumatoid arthritis research in the 21st century: limitations of traditional models, new technologies, and opportunities for a human biology-based approach.ALTEX 2020;37(2):223–242; Epub 20191217. PubMed PMID: 31854453.;
  • Scott LJ. Tocilizumab: a Review in Rheumatoid Arthritis. Drugs. 2017;77(17):1865–1879. PubMed PMID: 29094311; PubMed Central PMCID: PMC5736769.
  • Bessis N, Decker P, Assier E, et al.Arthritis models: usefulness and interpretation.Semin Immunopathol.2017;39(4):469–486; Epub 20170327. PubMed PMID: 28349194;
  • Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 1992;89(20):9784–9788. PubMed PMID: 1409699; PubMed Central PMCID: PMC50217.
  • Zhao S, Mysler E, Moots RJ.Etanercept for the treatment of rheumatoid arthritis.Immunotherapy.2018;10(6):433–445; Epub 20180227. PubMed PMID: 29482402;
  • Alldred A. Etanercept in rheumatoid arthritis. Expert Opin Pharmacother. 2001;2(7):1137–1148. PubMed PMID: 11583065.
  • Wooley PH, Dutcher J, Widmer MB, et al. Influence of a recombinant human soluble tumor necrosis factor receptor FC fusion protein on type II collagen-induced arthritis in mice. J Immunol. 1993;151(11):6602–6607. PubMed PMID: 8245488.
  • Vignali DA, Moreno J, Schiller D, et al. Species-specific binding of CD4 to the beta 2 domain of major histocompatibility complex class II molecules. J Exp Med. 1992;175(4):925–932.
  • Fugger L, Michie SA, Rulifson I, et al. Expression of HLA-DR4 and human CD4 transgenes in mice determines the variable region beta-chain T-cell repertoire and mediates an HLA-DR-restricted immune response. Proc Natl Acad Sci U S A. 1994;91(13):6151–6155. PubMed PMID: 8016129; PubMed Central PMCID: PMC44156.
  • Ito K, Bian HJ, Molina M, et al. HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J Exp Med. 1996;183(6):2635–2644. PubMed PMID: 8676084; PubMed Central PMCID: PMC2192625.
  • Rosloniec EF, Brand DD, Myers LK, et al. An HLA-DR1 transgene confers susceptibility to collagen-induced arthritis elicited with human type II collagen. J Exp Med. 1997;185(6):1113–1122. PubMed PMID: 9091584; PubMed Central PMCID: PMC2196244.
  • Andersson EC, Hansen BE, Jacobsen H, et al. Definition of MHC and T cell receptor contacts in the HLA-DR4restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice. Proc Natl Acad Sci U S A. 1998;95(13):7574–7579. PubMed PMID: 9636191; PubMed Central PMCID: PMC22687.
  • Cheng S, Baisch J, Krco C, et al. Expression and function of HLA-DQ8 (DQA1*0301/DQB1*0302) genes in transgenic mice. Eur J Immunogenet. 1996;23(1):15–20. PubMed PMID: 8834919.
  • Taneja V, Behrens M, Mangalam A, et al. New humanized HLA-DR4-transgenic mice that mimic the sex bias of rheumatoid arthritis. Arthritis Rheum. 2007;56(1):69–78. PubMed PMID: 17195209.
  • Snir O, Rieck M, Gebe JA, et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum. 2011;63(10):2873–2883. PubMed PMID: 21567378; PubMed Central PMCID: PMC3174345.
  • Latham KA, Whittington KB, Zhou R, et al. Ex vivo characterization of the autoimmune T cell response in the HLA-DR1 mouse model of collagen-induced arthritis reveals long-term activation of type II collagen-specific cells and their presence in arthritic joints. J Immunol. 2005;174(7):3978–3985. PubMed PMID: 15778354.
  • Miller DC, Whittington KB, Brand DD, et al.The CII-specific autoimmune T-cell response develops in the presence of FTY720 but is regulated by enhanced Treg cells that inhibit the development of autoimmune arthritis.Arthritis Res Ther.2016;18(1):8; Epub 20160112. PubMed PMID: 26757712; PubMed Central PMCID: PMC4718028;
  • Yue D, Brintnell W, Mannik LA, et al. CTLA-4Ig blocks the development and progression of citrullinated fibrinogen-induced arthritis in DR4-transgenic mice. Arthritis Rheum. 2010;62(10):2941–2952. PubMed PMID: 20533540.
  • Blair HA, Deeks ED, Blair HA, et al. Abatacept: a Review in Rheumatoid Arthritis. Drugs. 2017;77(11):1221–1233. PubMed PMID: 28608166.
  • Malmström V, Ho KK, Lun J, et al. Arthritis susceptibility in mice expressing human type II collagen in cartilage. Scand J Immunol. 1997;45(6):670–677. PubMed PMID: 9201307.
  • Berlo SE, Guichelaar T, Ten Brink CB, et al. Increased arthritis susceptibility in cartilage proteoglycan–specific T cell receptor–transgenic mice. Arthritis Rheum. 2006;54(8):2423–2433. PubMed PMID: 16869010.
  • Batsalova T, Dzhambazov B, Merky P, et al. T cell tolerance against self type II collagen in HLA-DR4-transgenic mice and development of autoimmune arthritis. Arthritis Rheum. 2010;62(7):1911–1920. PubMed PMID: 20309862.
  • Theocharides AP, Rongvaux A, Fritsch K, et al. Humanized hemato-lymphoid system mice. Haematologica. 2016;101(1):5–19. PubMed PMID: 26721800; PubMed Central PMCID: PMC4697887.
  • Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–530. PubMed PMID: 6823332.
  • Shultz LD, Brehm MA, Garcia-Martinez JV, et al.Humanized mice for immune system investigation: progress, promise and challenges.Nat Rev Immunol.2012;12(11):786–798; Epub 20121012. PubMed PMID: 23059428; PubMed Central PMCID: PMC3749872;
  • Watanabe S, Ohta S, Yajima M, et al. Humanized NOD/SCID/IL2Rgamma(null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol. 2007;81(23):13259–13264. . PubMed PMID: 17881441; PubMed Central PMCID: PMC2169100
  • Tighe H, Silverman GJ, Kozin F, et al. Autoantibody production by severe combined immunodeficient mice reconstituted with synovial cells from rheumatoid arthritis patients. Eur J Immunol. 1990;20(8):1843–1848. PubMed PMID: 2209691.
  • Misharin AV, Haines GK, Rose S, et al.Development of a new humanized mouse model to study acute inflammatory arthritis.J Transl Med.2012;10(1):190; Epub 20120913. PubMed PMID: 22974474; PubMed Central PMCID: PMC3480927;
  • Sack U, Kuhn H, Ermann J, et al. Synovial tissue implants from patients with rheumatoid arthritis cause cartilage destruction in knee joints of SCID.bg mice. J Rheumatol. 1994;21(1):10–16. PubMed PMID: 8151561.
  • Lefèvre S, Knedla A, Tennie C, et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009;15(12):1414–1420. . PubMed PMID: 19898488; PubMed Central PMCID: PMC3678354
  • Greenblatt MB, Vrbanac V, Vbranac V, et al. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS One. 2012;7(9):e44664. . PubMed PMID: 22957096; PubMed Central PMCID: PMC3434179
  • Lockridge JL, Zhou Y, Becker YA, et al. Mice engrafted with human fetal thymic tissue and hematopoietic stem cells develop pathology resembling chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2013;19(9):1310–1322. . PubMed PMID: 23806772; PubMed Central PMCID: PMC3755109
  • Häupl T, Yahyawi M, Lübke C, et al. Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen. 2007;12(3):328–340. . PubMed PMID: 17379860
  • Damerau A, Gaber T. Modeling Rheumatoid Arthritis In Vitro: from Experimental Feasibility to Physiological Proximity. Int J Mol Sci. 2020;21(21):1–25.
  • Xie Q, Xu WD, Pan M, et al. Association of IL-35 expression and gene polymorphisms in rheumatoid arthritis. Int Immunopharmacol. 2021;90. 10.1016/J.INTIMP.2020.107231.
  • Pagani S, Torricelli P, Veronesi F, et al. An advanced tri-culture model to evaluate the dynamic interplay among osteoblasts, osteoclasts, and endothelial cells. J Cell Physiol. 2018;233(1):291–301.
  • Neumann E, Riepl B, Knedla A, et al. Cell culture and passaging alters gene expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts. Arthritis Res Therapy. 2010;12(3):1–10.
  • Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910.
  • Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839–845. PubMed PMID: 17684528.
  • Von Der Mark K, Gauss V, Von Der Mark H, et al. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267(5611):531–532.
  • Hall AC.The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering.Curr Rheumatol Rep.2019;21(8):38; Epub 20190615. PubMed PMID: 31203465; PubMed Central PMCID: PMC6571082;
  • Goldring MB Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. Human Cell Culture Protocols: Humana Press. p. 069–96.
  • Penolazzi L, Lambertini E, Piva R. The Adequacy of Experimental Models and Understanding the Role of Non-coding RNA in Joint Homeostasis and Disease. Front Genet. 2020;11:11.
  • Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015–3024.
  • Kim K, Bou-Ghannam S, Thorp H, et al. Human mesenchymal stem cell sheets in xeno-free media for possible allogenic applications. Sci Rep. 2019;9(1):14415.
  • Weber M-C, Fischer L, Damerau A, et al. Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation. Biofabrication. 2020;12(4):45016.
  • Bicho D, Pina S, Oliveira JM, et al. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. Adv Exp Med Biol. 2018;1059:373–394. PubMed PMID: 29736583.
  • Owen R, Reilly GC, Zwick M. In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol. 2018;6:6.
  • Park JY, Park SH, Kim MG, et al. Biomimetic Scaffolds for Bone Tissue Engineering. (0065-2598 (Print)).
  • Dhivya S, Saravanan S, Sastry TP, et al. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology. 2015;13(1):40.
  • Scheinpflug J, Pfeiffenberger M, Damerau A, et al. Journey into Bone Models: a Review. Genes (Basel). 2018;9(5):247. PubMed PMID.
  • Zeng Y, Hoque J, Varghese S. Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater. 2019;93:152–168.
  • Mazzei D, Guzzardi MA, Giusti S, et al. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnol Bioeng. 2010;106(1):127–137.
  • Mattei G, Giusti S, Ahluwalia A. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes. 2014;2(3):548–569. PubMed PMID.
  • Giusti S, Pagliari F, Vozzi F, et al. SQPR 3.0: a Sensorized Bioreactor for Modulating Cardiac Phenotype. Procedia Eng. 2013;59:219–225.
  • De Maria C, Giusti S, Mazzei D, et al. Squeeze pressure bioreactor: a hydrodynamic bioreactor for noncontact stimulation of cartilage constructs. Tissue Eng Part C Methods. 2011;17(7):757–764.
  • Bader DL, Salter DM, Chowdhury TT. Biomechanical Influence of Cartilage Homeostasis in Health and Disease. Arthritis. 2011;2011:979032.
  • Baker M. Reproducibility: respect your cells! Nature. Nature. 2016;537(7620):433–435.
  • Mazzei D, Vozzi F, Cisternino A, et al. System for Simulating Physiological Environments. IEEE Trans Ind Electron. 2008;55(9):3273–3280.
  • Giusti S, Mazzei D, Cacopardo L, et al. Environmental Control in Flow Bioreactors. Processes. 2017;5(2):16. PubMed PMID.
  • Ibold Y, Frauenschuh S, Kaps C, et al. Development of a High-Throughput Screening Assay Based on the 3-Dimensional Pannus Model for Rheumatoid Arthritis. J Biomol Screen. 2007;12(7):956–965. PubMed PMID: 17942788.
  • Peck Y, Leom LT, Low PFP, et al. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med. 2018;12(1):e237–e49.
  • Smith MD.The normal synovium.Open Rheumatol J.2011;5(1):100–106; Epub 20111230. PubMed PMID: 22279508; PubMed Central PMCID: PMC3263506;
  • Kiener HP, Watts GFM, Cui Y, et al. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis Rheumatism. 2010;62(3):742–752.
  • Karonitsch T, Beckmann D, Dalwigk K, et al. Targeted inhibition of Janus kinases abates interfon gamma-induced invasive behaviour of fibroblast-like synoviocytes. Rheumatology. 2017;57(3):572–577.
  • Bonelli M, Dalwigk K, Platzer A, et al. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes. Exp Mol Med. 2019;51(7):1–11.
  • Broeren MGA, Waterborg CEJ, Wiegertjes R, et al. A three-dimensional model to study human synovial pathology. Altex. 2019;36(1):18–28. . PubMed PMID: 30303512
  • Denu RA, Nemcek S, Bloom DD, et al. Fibroblasts and Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable. Acta Haematol. 2016;136(2):85–97.
  • Carballo CB, Nakagawa Y, Sekiya I, et al. Basic Science of Articular Cartilage. Clin Sports Med. 2017;36(3):413–425.
  • Adán N, Guzmán-Morales J, Ledesma-Colunga MG, et al. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J Clin Invest. 2013;123(9):3902–3913.
  • Schuerwegh AJ, Dombrecht EJ, Stevens WJ, et al. Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis Cartilage. 2003;11(9):681–687.
  • Zhang W, Chen J, Tao J, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 2013;34(3):713–723.
  • Park H, Choi B, Hu J, et al. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9(1):4779–4786.
  • Andreas K, Lübke C, Häupl T, et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitrostudy. Arthritis Res Ther. 2008;10(1):R9–R.
  • Sato M, Yamato M, Hamahashi K, et al. Articular Cartilage Regeneration Using Cell Sheet Technology. Anat Rec. 2014;297(1):36–43.
  • Furukawa KS, Suenaga H, Toita K, et al. Rapid and Large-Scale Formation of Chondrocyte Aggregates by Rotational Culture. Cell Transplant. 2003;12(5):475–479. PubMed PMID: 12953921.
  • Penick KJ, Solchaga LA, Welter JF. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. BioTechniques. 2005;39(5):687–691. PubMed PMID: 16312217.
  • Zhang S, Ba K, Wu L, et al. Adventitial Cells and Perictyes Support Chondrogenesis Through Different Mechanisms in 3-Dimensional Cultures With or Without Nanoscaffolds. J Biomed Nanotechnol. 2015;11(10):1799–1807. PubMed PMID: 26502642.
  • Sanjurjo-Rodríguez C, Castro-Viñuelas R, Hermida-Gómez T, et al. Human Cartilage Engineering in an In Vitro Repair Model Using Collagen Scaffolds and Mesenchymal Stromal Cells. Int J Med Sci. 2017;14(12):1257–1262.
  • Ando W, Tateishi K, Katakai D; In Vitro Generation of a Scaffold-Free Tissue-Engineered Construct (TEC) Derived from Human Synovial Mesenchymal Stem Cells: Biological and Mechanical Properties and Further Chondrogenic Potential. Tissue Engineering Part A. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Engineering. Part A. 2008;14(12):2041–2049. PubMed PMID: 18636944.
  • Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch Bone Jt Surg. 2018;6(2): 90–99 .
  • Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457–1468.
  • Agarwal T, Kabiraj P, Narayana GH, et al. Alginate Bead Based Hexagonal Close Packed 3D Implant for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2016;8(47):32132–32145.
  • T-m DW, Fratila-Apachitei LE, Zadpoor AA, et al. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5(4):197–211.
  • Fernandes G, Wang C, Yuan X, et al. Combination of Controlled Release Platelet-Rich Plasma Alginate Beads and Bone Morphogenetic Protein-2 Genetically Modified Mesenchymal Stem Cells for Bone Regeneration. J Periodontol. 2016;87(4):470–480.
  • Deng Y, Jiang C, Li C, et al. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci Rep. 2017;7(1):5588.
  • Chiesa I, De Maria C, Lapomarda A, et al. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication. 2020;12(2):025013. . PubMed PMID: 31929117
  • Ng J, Bernhard J, Mesenchymal Stem V-NG Cells for Osteochondral Tissue Engineering. (1940-6029 (Electronic)).
  • Lin Z, Li Z, Li EN, et al. Osteochondral Tissue Chip Derived From iPSCs: modeling OA Pathologies and Testing Drugs. Front Bioeng Biotechnol. 2019;7:7.
  • Potter SJ, Using DT. Ex Vivo Upright Droplet Cultures of Whole Fetal Organs to Study Developmental Processes during Mouse Organogenesis. J Visualized Exp. 2015;(104). DOI:10.3791/53262.
  • Seibl R, Birchler T, Loeliger S, et al. Expression and Regulation of Toll-Like Receptor 2 in Rheumatoid Arthritis Synovium. Am J Pathol. 2003;162(4):1221–1227.
  • Ultaigh SN, Saber TP, McCormick J, et al. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures. Arthritis Res Ther. R33.Epub 20110223. doi: 10.1186/ar3261. PubMed PMID: 21345222; PubMed Central PMCID: PMC3241377. 2011;13(1).
  • Nic An Ultaigh S, Saber, Mccormick J, et al. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures. Arthritis Res Ther. 2011;13(1):R33.
  • Gang F, Zhang Q, Jiang L, et al. Thermochemotherapy Meets Tissue Engineering for Rheumatoid Arthritis Treatment (Adv. Funct. Mater. 40/2021). Adv Funct Mater. 2021;31(40):2170295.
  • Tew SR, Kwan APL, Hann A, et al. The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheumatism. 2000;43(1):215–225.
  • Gilbert SJ, Singhrao SK, Khan IM, et al. Enhanced Tissue Integration During Cartilage Repair In Vitro Can Be Achieved by Inhibiting Chondrocyte Death at the Wound Edge. Tissue Eng Part A. 2009;15(7):1739–1749.
  • Marino S, Staines KA, Brown G, et al. Models of ex vivo explant cultures: applications in bone research. Bonekey Rep. 2016;5:818.
  • Jodat AY, Kang GM, Kiaee K, et al. Human-Derived Organ-on-a-Chip for Personalized Drug Development. Curr Pharm Des. 2018;24(45):5471–5486.
  • Seidi S, Eftekhari A, Khusro A, et al. Simulation and modeling of physiological processes of vital organs in organ-on-a-chip biosystem. J King Saud Univ Sci. 2022;34(1):101710.
  • Rajan SAP, Aleman J, Wan M, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater. 2020;106:124–135.
  • Rosser J, Bachmann B, Jordan C, et al. Microfluidic nutrient gradient–based three-dimensional chondrocyte culture-on-a-chip as an in vitro equine arthritis model. Mater Today Bio. 2019;4:100023.
  • Rothbauer M, Höll G Fau - Eilenberger C, Eilenberger C Fau - Kratz SRA, et al. Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing. (Electronic). 1473
  • Ma H-P, Deng X, Chen D-Y, et al. A microfluidic chip-based co-culture of fibroblast-like synoviocytes with osteoblasts and osteoclasts to test bone erosion and drug evaluation. R Soc Open Sci. 2018;5(9):180528.
  • Occhetta P, Mainardi A, Votta E, et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng. 2019;3(7):545–557.
  • Knowlton S, Tasoglu S. A Bioprinted Liver-on-a-Chip for Drug Screening Applications. Trends Biotechnol. 2016;34(9):681–682.
  • Lee J, Kidney-on-a-Chip: KS, New A. Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity. Curr Drug Metab. 2018;19(7):577–583.
  • Zhang YS, Aleman J, Arneri A, et al. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater. 2015;10(3):034006.
  • Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med. 2014;239(9):1061–1072. PubMed PMID: 25187571.
  • Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015;520(7549):609–611.
  • Strand V, Tundia N, Song Y, et al. Economic Burden of Patients with Inadequate Response to Targeted Immunomodulators for Rheumatoid Arthritis. J Manag Care Spec Pharm. 2018;24(4):344–352.
  • Romão VC, Canhão H, Fonseca JE. Old drugs, old problems: where do we stand in prediction of rheumatoid arthritis responsiveness to methotrexate and other synthetic DMARDs? BMC Med. 2013;11:17. Epub 20130123. ; PubMed Central PMCID: PMC3606422.
  • Mestres G, Perez RA, D’Elía NL, et al. Advantages of microfluidic systems for studying cell-biomaterial interactions—focus on bone regeneration applications. Biomed Phys Eng Express. 2019;5(3):032001.
  • Halldorsson S, Lucumi E, Gómez-Sjöberg R, et al. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015;63:218–231.
  • Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, et al. Organs-on-a-Chip Module: a Review from the Development and Applications Perspective. Micromachines. 2018;9(10):536. PubMed PMID:.
  • Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol. 2014;25:45–50.
  • Weibel DB, Whitesides GM. Applications of microfluidics in chemical biology. Curr Opin Chem Biol. 2006;10(6):584–591.
  • Noh J, Kim Hc Fau - Chung TD, Chung TD. Biosensors in microfluidic chips. (0340-1022 (Print)).
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–189.
  • Shanti A, Teo J, Stefanini C. In Vitro Immune Organs-on-Chip for Drug Development: a Review. Pharmaceutics. 2018;10(4):278. PubMed PMID.
  • Takahashi K, Tanabe K, Ohnuki M, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. PubMed PMID: 18035408
  • Chang SK, Gu Z, Brenner MB. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol Rev. 2010;233(1):256–266. PubMed PMID: 20193004.
  • Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–255. PubMed PMID: 20193003; PubMed Central PMCID: PMC2913689.
  • Rim YA, Park N, Nam Y, et al. Generation of Induced-pluripotent Stem Cells Using Fibroblast-like Synoviocytes Isolated from Joints of Rheumatoid Arthritis Patients. J Vis Exp. 2016;(116). Epub 20161016. doi: 10.3791/54072. PubMed PMID: 27805584; PubMed Central PMCID: PMC5092200.
  • Wang L, Cong X, Liu G, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22(24):3192–3202. . PubMed PMID: 23941289
  • Witten TM, Del Rincon I, Escalante A. Modeling the progression of articular erosion in rheumatoid arthritis (RA): initial mathematical models. MathComput Modell. 2000;31(2):31–38.
  • Jit M, Henderson B, Stevens M, et al.TNF-alpha neutralization in cytokine-driven diseases: a mathematical model to account for therapeutic success in rheumatoid arthritis but therapeutic failure in systemic inflammatory response syndrome.Rheumatology (Oxford).2005;44(3):323–331; Epub 20041207. PubMed PMID: 15585509;
  • Baker M, Denman-Johnson S, Brook BS, et al. Mathematical modelling of cytokine-mediated inflammation in rheumatoid arthritis. Math Med Biol. 2013;30(4):311–337. Epub 20120920. .
  • Lacroix BD, Lovern MR, Stockis A, et al.A pharmacodynamic Markov mixed-effects model for determining the effect of exposure to certolizumab pegol on the ACR20 score in patients with rheumatoid arthritis.Clin Pharmacol Ther.2009;86(4):387–395; Epub 20090722. PubMed PMID: 19626001;
  • Moise N, Friedman A. Rheumatoid arthritis - a mathematical model. J Theor Biol. 2019;461:17–33. Epub 20181019. .
  • McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–442. PubMed PMID: 17525752.
  • Hashimoto M.Th17 in Animal Models of Rheumatoid Arthritis.J Clin Med.2017;6(7):73; Epub 20170721. PubMed PMID: 28753982; PubMed Central PMCID: PMC5532581;
  • Friedman A, Lam KY.Analysis of a mathematical model of rheumatoid arthritis.J Math Biol.2020;80(6):1857–1883; Epub 20200305. PubMed PMID: 32140775;
  • Mori Y, Mori N, Izumiyama T, et al. Mathematical model for histogram analysis of dynamic contrast-enhanced MRI: a method to evaluate the drug treatment response in rheumatoid arthritis. Eur J Radiol. 2021;141:109831. Epub 20210625. .
  • Ostergaard M, Stoltenberg M, Løvgreen-Nielsen P, et al. Quantification of synovistis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson Imaging. 1998;16(7):743–754. PubMed PMID: 9811140.
  • Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–232. PubMed PMID: 10508281.
  • Cimmino MA, Innocenti S, Livrone F, et al. Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis Rheum. 2003;48(5):1207–1213. PubMed PMID: 12746893.
  • Hodgson RJ, O’Connor P, Moots R.MRI of rheumatoid arthritis image quantitation for the assessment of disease activity, progression and response to therapy.Rheumatology (Oxford).2008;47(1):13–21; Epub 20071128. PubMed PMID: 18045811;
  • Ochi J, Mori N, Mori Y, et al. Validating an Empirical Mathematical Model for Dynamic Contrast-enhanced MR Imaging of Hand and Wrist Synovitis in Rheumatoid Arthritis: correlation of Model Parameters with Clinical Disease Activity. Magn Reson Med Sci. 2020;19(3):176–183. . PubMed PMID: 31292313; PubMed Central PMCID: PMC7553809
  • Brown AK, Quinn MA, Karim Z, et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum. 2006;54(12):3761–3773. PubMed PMID: 17133543.
  • Shimizu T, Cruz A, Tanaka M, et al. Structural Changes over a Short Period Are Associated with Functional Assessments in Rheumatoid Arthritis. J Rheumatol. 2019;46(7):676–684. . PubMed PMID: 30770506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.