153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of different CFD turbulence models for a diesel pool combustion event in an underground mine: a case study

, , &
Received 01 Sep 2023, Accepted 24 Mar 2024, Published online: 27 Mar 2024

References

  • D.P. Tripathy and C.K. Ala, Risk assessment in underground coal mines using fuzzy logic in the presence of uncertainty, J. Inst. Eng. India Ser D. 99 (1) (2018), pp. 157–163. doi:10.1007/s40033-018-0154-7.
  • Z. Song and C. Kuenzer, Coal fires in China over the last decade: A comprehensive review, Int. J. Coal Geol. 133 (1) (2014), pp. 72–99. doi:10.1016/j.coal.2014.09.004.
  • M.A. Trevits, L. Yuan, A.C. Smith, E.D. Thimons, and G.V. Goodman, The Status of Mine Fire Research in the United States, 21st World Mining Congress, September 7–11, 2008, Krakow, Poland, Taylor and Francis, 2008, pp. 303–308. https://stacks.cdc.gov/view/cdc/9843.
  • M.I. De Rosa, Information circular 9470: Analysis of mine fires for all U.S. underground and surface coal mining categories: 1990 - 1999, Information circular (National Institute for Occupational Safety and Health); IC 9470; DHHS publication no. (NIOSH) 2004-167, Pittsburgh Research Laboratory (National Institute for Occupational Safety and Health), United States, 2004. https://stacks.cdc.gov/view/cdc/8347.
  • Y.T. Liang, X.J. Hou, H.Z. Lou, F.C. Tian, and G.S. Yu, Development countermeasures and current situation of coal mine fire prevention and extinguishing in China, Coal Sci. Technol. 44 (2016), pp. 1–6.
  • L. Yuan, R.A. Thomas, J.H. Rowland, and L. Zhou, Early fire detection for underground diesel fuel storage areas, Process Saf. Environ. Prot. 119 (2018), pp. 69–74. doi:10.1016/j.psep.2018.07.022.
  • O.B. Salami, G. Xu, A.R. Kumar, R.I. Pushparaj, and A. Iqbal, Fire-induced temperature attenuation under the influence of a single ceiling smoke extraction point in a bifurcated drift, 19th North American Mine Ventilation Symposium (NAMVS 2023), June 17–23, 2023, Rapid City, South Dakota, USA, CRC Press, 2023.
  • O.B. Salami, G. Xu, A.R. Kumar, and R.I. Pushparaj, Underground mining fire hazards and the optimization of emergency evacuation strategies (EES): The issues, existing methodology and limitations, and way forward, Process Saf. Environ. Prot. 177 (2023), pp. 617–634. doi:10.1016/j.psep.2023.07.012.
  • J. An, Y. Liang, and Y. Zhai, “Research of mine fire simulation technology based on computational experiments,” in 2nd International Conference on Consumer Electronics, Communications and Networks, Yichang, 2012.
  • L. Zhou, L. Yuan, R. Thomas, D. Bahrami, and J. Rowland, An improved method to calculate the heat release rate of a mine fire in underground mines, Min. Metall. Explor. 37 (6) (2020), pp. 1941–1949. doi:10.1007/s42461-020-00276-9.
  • L. Zhou, A.C. Smith, and L. Yuan, New improvements to MFIRE to enhance fire-modeling capabilities, Min. Eng. 68 (6) (2016), pp. 45–50. doi:10.19150/me.6628.
  • J. Fox, J. Bowling, and S. Schafrik, Principle roles of mine fire simulation in mine management and emergency planning, in 15th North American Mine Ventilation Symposium, Blacksburg, 2015.
  • P.G. Tucker and S. Lardeau, Applied large eddy simulation, Phil. Trans. R. Soc. A 367 (1899) (2009), pp. 2809–2818. doi:10.1098/rsta.2009.0065.
  • Y. Zhiyin, Large-eddy simulation: Past, present and the future, Chin. J. Aeronaut. 28 (1) (2015), pp. 11–24. doi:10.1016/j.cja.2014.12.007.
  • U. Piomelli, Large eddy simulations in 2030 and beyond, Phil. Trans. R. Soc. A 372 (2022) (2014), pp. 20130320. doi:10.1098/rsta.2013.0320.
  • A.R. Kumar, K.M. Henderson, and S. Schafrik, Scale modeling, PIV, and LES of blowing type airflow in deep cut continuous coal mining section, in Mine Ventilation, T. Purushotham, ed., Rapid City, CRC Press, 2021, pp. 65–74.
  • F. Fernández-Alaiz, A.M. Castañón, F. Gómez-Fernández, and M. Bascompta, Mine fire behavior under different ventilation conditions: Real-scale tests and CFD modeling, Appl. Sci. 10 (10) (2020), pp. 3380. doi:10.3390/app10103380.
  • K.B. McGrattan, G.P. Forney, J. Floyd, and S. Hostikka, Fire Dynamics Simulator (Version 5): User’s Guide, US Department of Commerce, Technology Administration, National Institute of Standards and Technology, United States, 2005.
  • J.R. Stewart, H.N. Phylaktou, G.E. Andrews, and A.D. Burns, Evaluation of CFD simulations of transient pool fire burning rates, J. Loss Prev. Process Ind. 71 (2021), pp. 104495. doi:10.1016/j.jlp.2021.104495.
  • A. Haghighat, K. Luxbacher, and B. Lattimer, Simulation of a methane fire event at a coal mine working face with consideration of ventilation curtain damage, Transactions Of The Society For Mining, Metallurgy & Exploration 340 (1) (2016), pp. 120–126. doi:10.19150/trans.7336.
  • D. Lacanettea, J. Mindeguia, A. Brodard, C. Ferrier, P. Guibert, J. Leblanc, P. Malaurent, and C. Sirieix, Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires, Int. J. Therm. Sci. 120 (2017), pp. 1–18. doi:10.1016/j.ijthermalsci.2017.05.021.
  • S. Jafari, B. Farhanieh, and H. Afsin, Numerical investigation of critical velocity in curved tunnels: Parametric study and establishment of new model, Trans Soc Min Metall Explor 135 (2023), pp. 105021. doi:10.1016/j.tust.2023.105021.
  • D. Cuifeng, L. Zhiwei, and G. Qianqian, Numerical simulation of mine fire based on the FDS, in International Conference on Electric Technology and Civil Engineering (ICETCE), Beijing, 2011.
  • P. Chen, S. Guo, and Y. Wang, Human evacuation affected by smoke movement in mine fires, Int J Coal Sci Technol 3 (1) (2016), pp. 28–34. doi:10.1007/s40789-015-0100-3.
  • C.S. Lin and J.P. Hsu, “Numerical simulation and analysis of different airflow velocities in tunnel fire under freeway,” in International Conference on Computer Technology, Electronics and Communication (ICCTEC), Dalian, 2017.
  • L.H. Hu, R. Huo, W. Peng, W.K. Chow, and R.X. Yang, On the maximum smoke temperature under the ceiling in tunnel fires, Tunnelling Underground Space Technol. 21 (6) (2006), pp. 650–655. doi:10.1016/j.tust.2005.10.003.
  • C.G. Fan, X.Y. Li, Y. Mu, F.Y. Guo, and J. Ji, Smoke movement characteristics under stack effect in a mine laneway fire, Appl. Therm. Eng. 110 (2017), pp. 70–79. doi:10.1016/j.applthermaleng.2016.08.120.
  • A.I. Kin and A.I. Sidorenko, Simulation of the fire in the working of coal mine using the fire dynamics simulator software, in 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Chemal.
  • O.B. Salami, A.R. Kumar, I. Aamir, R.I. Pushparaj, and G. Xu, Enhancing fire safety in underground mines: Experimental and large eddy simulation of temperature attenuation, gas evolution, and bifurcation influence for improved emergency response, Process Saf. Environ. Prot. 183 (2024), pp. 260–273. doi:10.1016/j.psep.2023.12.056.
  • P.J. Roache, Quantification of uncertainty in computational fluid dynamics, Annu Rev Fluid Mech 29 (1) (1997), pp. 123–160. doi:10.1146/annurev.fluid.29.1.123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.