279
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Water–ice phase transition in frozen soils: a mesoscopic numerical study based on lattice Boltzmann method

, , &
Received 03 Jan 2024, Accepted 02 Apr 2024, Published online: 09 Apr 2024

References

  • Bernaschi, M., Melchionna, S., and Succi, S. 2019. Mesoscopic simulations at the physics-chemistry-biology interface. Reviews of Modern Physics, 91 (2), 025004. doi:10.1103/RevModPhys.91.025004.
  • Chen, F., et al. 2020. Progress of applied research of physical geography and living environment in China from 1949 to 2019. Acta Geographica Sinica, 75 (9), 1799–1830.
  • Chen, Y., et al. 2022. Finite element analysis of heat and mass transfer in unsaturated freezing soils: formulation and verification. Computers and Geotechnics, 149, 104848. doi:10.1016/j.compgeo.2022.104848.
  • Hashimoto, R., Shibuta, Y., and Suzuki, T. 2011. Estimation of solid-liquid interfacial energy from Gibbs-Thomson effect: a molecular dynamics study. ISIJ International, 51 (10), 1664–1667. doi:10.2355/isijinternational.51.1664.
  • Hu, T., Wang, T., and Kogbara, R.B. 2021. A finite volume-based model for the hydrothermal behavior of soil under freeze–thaw cycles. Public Library of Science ONE, 16 (6), e0252680. doi:10.1371/journal.pone.0252680.
  • Hu, Y., et al. 2019. Thermal performances of saturated porous soil during freezing process using lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry, 141 (5), 1529–1541. doi:10.1007/s10973-019-09035-5.
  • Jiaung, W., Ho, J., and Kuo, C. 2001. Lattice Boltzmann method for the heat conduction problem with phase change. Numerical heat transfer. Part B, Fundamentals, 39 (2), 167–187. doi:10.1080/10407790150503495.
  • Jin, X., et al. 2020. Modeling the unfrozen water content of frozen soil based on the absorption effects of clay surfaces. Water Resources Research, 56 (12), e2020WR027482. doi:10.1029/2020WR027482.
  • Jourabian, M., Farhadi, M., and Rabienataj Darzi, A.A. 2013. Outward melting of ice enhanced by Cu nanoparticles inside cylindrical horizontal annulus: lattice Boltzmann approach. Applied Mathematical Modelling, 37 (20–21), 8813–8825. doi:10.1016/j.apm.2013.04.003.
  • Jourabian, M., Farhadi, M., and Rabienataj Darzi, A.A. 2017. Accelerated melting of PCM in a multitube annulus-type thermal storage unit using lattice Boltzmann simulation. Heat Transfer-Asian Research, 46 (8), 1499–1525. doi:10.1002/htj.21286.
  • Krüger, T., et al. 2017. The lattice Boltzmann method: principles and practice. Cham: Springer International Publishing.
  • Li, Q., et al. 2015. Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. International Journal of Heat and Mass Transfer, 85, 787–796. doi:10.1016/j.ijheatmasstransfer.2015.01.136.
  • Li, S., et al. 2018. Experimental and numerical simulations on heat-water-mechanics interaction mechanism in a freezing soil. Applied Thermal Engineering, 132, 209–220. doi:10.1016/j.applthermaleng.2017.12.061.
  • Li, X., Zheng, S.F., and Wang, M., et al. 2023. The prediction of the soil freezing characteristic curve using the soil water characteristic curve. Cold Regions Science and Technology, 212, 103880. doi:10.1016/j.coldregions.2023.103880.
  • Liu, J., et al. 2020. Characterizing the pore size distribution of a chloride silt soil during freeze–thaw processes via nuclear magnetic resonance relaxometry. Soil Science Society of America Journal, 84 (5), 1577–1591. doi:10.1002/saj2.20087.
  • Liu, J., Yang, P., and Yang, Z.J., 2020. Electrical properties of frozen saline clay and their relationship with unfrozen water content. Cold Regions Science and Technology, 178, 103127. doi:10.1016/j.coldregions.2020.103127
  • Ma, T., et al. 2017. Experimental study of effect of NaCl solution on soil freezing characteristic. Rock and Soil Mechanics, 38 (7), 1919–1925.
  • Mu, Q.Y., et al. 2019. Stress effects on soil freezing characteristic curve: equipment development and experimental results. Vadose Zone Journal, 18 (1), 1–10. doi:10.2136/vzj2018.11.0199.
  • Petrov, O.V. and Furó, I. 2009. NMR cryoporometry: principles, applications and potential. Progress in Nuclear Magnetic Resonance Spectroscopy, 54 (2), 97–122. doi:10.1016/j.pnmrs.2008.06.001.
  • Qian, Y.H., D’Humières, D., and Lallemand, P. 1992. Lattice BGK models for navier-stokes equation. Europhysics Letters (EPL), 17 (6), 479–484. doi:10.1209/0295-5075/17/6/001.
  • Sheng, D., et al. 2014. A potential new frost heave mechanism in high-speed railway embankments. Géotechnique, 64 (2), 144–154. doi:10.1680/geot.13.P.042.
  • Song, W., et al. 2016. A lattice Boltzmann model for heat and mass transfer phenomena with phase transformations in unsaturated soil during freezing process. International Journal of Heat and Mass Transfer, 94, 29–38. doi:10.1016/j.ijheatmasstransfer.2015.11.008.
  • Song, W., et al. 2017. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process. Open Physics, 15 (1), 379–393. doi:10.1515/phys-2017-0042.
  • Teng, J., et al. 2020. Parameterization of soil freezing characteristic curve for unsaturated soils. Cold Regions Science and Technology, 170, 102928. doi:10.1016/j.coldregions.2019.102928.
  • Teng, J., et al. 2021. A mathematic model for the soil freezing characteristic curve: the roles of adsorption and capillarity. Cold Regions Science and Technology, 181, 103178. doi:10.1016/j.coldregions.2020.103178.
  • Teng, J., et al. 2022. Frost heave in coarse-grained soils: experimental evidence and numerical modelling. Géotechnique, 73 (12), 1100–1111. doi:10.1680/jgeot.21.00182.
  • Teng, J., et al. 2019. Experimental study of ice accumulation in unsaturated clean sand. Géotechnique, 69 (3), 251–259. doi:10.1680/jgeot.17.P.208.
  • Wang, C., et al. 2022. Predicting the soil freezing characteristic from the particle size distribution based on micro‐pore space geometry. Water Resources Research, 58 (1), e2021WR030782. doi:10.1029/2021WR030782.
  • Wang, C., Lai, Y., and Zhang, M., 2017. Estimating soil freezing characteristic curve based on pore-size distribution. Applied Thermal Engineering, 124, 1049–1060. doi:10.1016/j.applthermaleng.2017.06.006
  • Wang, M., et al. 2019. A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM. Computer Methods in Applied Mechanics and Engineering, 346, 109–125. doi:10.1016/j.cma.2018.12.001.
  • Wang, Z., et al. 2011. Numerical simulation of water-heat coupled movements in seasonal frozen soil. Mathematical and Computer Modelling, 54 (3–4), 970–975. doi:10.1016/j.mcm.2010.11.024.
  • Watanabe, K. and Wake, T. 2009. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Regions Science and Technology, 59 (1), 34–41. doi:10.1016/j.coldregions.2009.05.011.
  • Xu, F., et al. 2018. Three phase heat and mass transfer model for unsaturated soil freezing process: part 1 - model development. Open Physics, 16 (1), 75–83. doi:10.1515/phys-2018-0014.
  • Yang, G.C., et al. 2019. A comprehensive parametric study of LBM-DEM for immersed granular flows. Computers and Geotechnics, 114, 103100. doi:10.1016/j.compgeo.2019.103100.
  • Yu, J., et al. 2018. Apparent contact angles of liquid water droplet breaking through a gas diffusion layer of polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 43 (12), 6318–6330. doi:10.1016/j.ijhydene.2018.01.168.
  • Zhang, Y., et al. 2018. Three phase heat and mass transfer model for unsaturated soil freezing process: part 2 - model validation. Open Physics, 16 (1), 84–92. doi:10.1515/phys-2018-0015.
  • Zhao, X., Dong, B., and Li, W., 2017. Numerical investigation on freezing process of a single freefalling droplet based on the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 109, 807–811. doi:10.1016/j.ijheatmasstransfer.2017.02.050
  • Zhou, J., et al. 2021. Comparison of freezing and hydration characteristics for porous media. Permafrost and Periglacial Processes, 32 (4), 702–713. doi:10.1002/ppp.2116.
  • Zhou, Y., et al. 2022. Advance and review on the experimental researches of the freezing and thawing characteristics of soils. Chinese Journal of Rock Mechanics and Engineering, 41 (6), 1267–1284.