50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pseudo-static Winkler springs for longitudinal underground structures subjected to shear waves

ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Feb 2024, Accepted 10 Apr 2024, Published online: 25 Apr 2024

References

  • Abedzadeh, F. and Pak, R.Y.S., 1995. Horizontal translation and rocking rotation of a rigid tubular foundation. Geotechnique, 45 (1), 83–94. doi:10.1680/geot.1995.45.1.83
  • Anoyatis, G. and Lemnitzer, A., 2017a. Kinematic Winkler modulus for laterally-loaded piles. Soils and Foundations, 57 (3), 453–471. doi:10.1016/j.sandf.2017.05.011
  • Anoyatis, G. and Lemnitzer, A., 2017b. Dynamic pile impedances for laterally–loaded piles using improved Tajimi and Winkler formulations. Soil Dynamics and Earthquake Engineering, 92, 279–297. doi:10.1016/j.soildyn.2016.09.020
  • Anoyatis, G. and Mylonakis, G., 2012. Dynamic Winkler modulus for axially loaded piles. Geotechnique, 62 (6), 521–536. doi:10.1680/geot.11.P.052
  • Anoyatis, G., Mylonakis, G., and Lemnitzer, A., 2016. Soil reaction to lateral harmonic pile motion. Soil Dynamics and Earthquake Engineering, 87, 164–179. doi:10.1016/j.soildyn.2016.05.004
  • Beredugo, Y.O. and Novak, M., 1972. Coupled horizontal and rocking vibration of embedded footings. Canadian Geotechnical Journal, 9 (4), 477–497. doi:10.1139/t72-046
  • Biot, M.A., 1937. Bending of an infinite beam on an elastic foundation. Journal of Applied Mechanics, 4 (1), A1–A7. doi:10.1115/1.4008739
  • Bozyigit, B., 2021. Seismic response of pile supported frames using the combination of dynamic stiffness approach and Galerkin’s method. Engineering Structures, 244, 112822. doi:10.1016/j.engstruct.2021.112822
  • Dobry, R. and O’Rourke, M.J., 1983. Discussion on seismic response of end-bearing piles by flores berrones and Whitman R V J. Journal of Geotechnical Engineering, 109 (5), 778–781. doi:10.1061/(ASCE)0733-9410(1983)109:5(778)
  • Dobry, R., et al. 1982. Horizontal stiffness and damping of single piles. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 108 (3), 439–459. doi:10.1061/AJGEB6.0001259
  • Francis, A.J., 1964. Analysis of pile groups with flexural resistance. Journal of the Soil Mechanics and Foundations Division, 90 (3), 10–32. doi:10.1061/JSFEAQ.0000615
  • Gazetas, G., 1991. Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering, 117 (9), 1363–1381. doi:10.1061/(ASCE)0733-9410(1991)117:9(1363)
  • Gerolymos, N. and Gazetas, G., 2006. Winkler model for lateral response of rigid caisson foundations in linear soil. Soil Dynamics and Earthquake Engineering, 26 (5), 347–361. doi:10.1016/j.soildyn.2005.12.003
  • Guha, I., Randolph, M.F., and White, D.J., 2016. Evaluation of elastic stiffness parameters for pipeline–soil interaction. Journal of Geotechnical and Geoenvironmental Engineering, 142 (6), 04016009. doi:10.1061/(ASCE)GT.1943-5606.0001466
  • Han, Y., 1989. Coupled vibration of embedded foundation. Journal of Geotechnical Engineering, 115 (9), 1227–1238. doi:10.1061/(ASCE)0733-9410(1989)115:9(1227)
  • Han, Y. and Novak, M., 1988. Dynamic behaviour of single piles under strong harmonic excitation. Canadian Geotechnical Journal, 25 (3), 523–534. doi:10.1139/t88-057
  • Hashash, Y.M., et al. 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16 (4), 247–293. doi:10.1016/S0886-7798(01)00051-7
  • Hetenyi, M., 1946. Beams on elastic foundations. Ann Arbor: University of Michigan Press.
  • Kavvadas, M. and Gazetas, G., 1993. Kinematic seismic response and bending of free-head piles in layered soil. Geotechnique, 43 (2), 207–222. doi:10.1680/geot.1993.43.2.207
  • Kramer S. 1996. Prentice-Hall, Inc New Jersey, 348–422.
  • Kuesel, T.R., 1969. Earthquake design criteria for subways. Journal of the Structural Division, 95 (6), 1213–1231. doi:10.1061/JSDEAG.0002292
  • Matsubara, K. and Hoshiya, M., 2000. Soil spring constants of buried pipelines for seismic design. Journal of Engineering Mechanics, 126 (1), 76–83. doi:10.1061/(ASCE)0733-9399(2000)126:1(76)
  • Mylonakis, G., 2001a. Elastodynamic model for large-diameter end-bearing shafts. Soils and Foundations, 41 (3), 31–44. doi:10.3208/sandf.41.3_31
  • Mylonakis, G., 2001b. Winkler modulus for axially loaded piles. Geotechnique, 51 (5), 455–461. doi:10.1680/geot.2001.51.5.455
  • Mylonakis, G. and Gazetas, G., 2002. Kinematic pile response to vertical P-wave seismic excitation. Journal of Geotechnical and Geoenvironmental Engineering, 128 (10), 860–867. doi:10.1061/(ASCE)1090-0241(2002)128:10(860)
  • Mylonakis, G., Nikolaou, S., and Gazetas, G., 2006. Footings under seismic loading: analysis and design issues with emphasis on bridge foundations. Soil Dynamics and Earthquake Engineering, 26 (9), 824–853. doi:10.1016/j.soildyn.2005.12.005
  • Nogami, T. and Novak, M., 1976. Soil‐pile interaction in vertical vibration. Earthquake Engineering & Structural Dynamics, 4 (3), 277–293. doi:10.1002/eqe.4290040308
  • Novak, M., 1974. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 11 (4), 574–598. doi:10.1139/t74-059
  • Novak, M., Aboul-Ella, F., and Nogami, T., 1978. Dynamic soil reactions for plane strain case. Journal of the Engineering Mechanics Division, 104 (4), 953–959. doi:10.1061/JMCEA3.0002392
  • Novak, M. and Nogami, T., 1977. Soil‐pile interaction in horizontal vibration. Earthquake Engineering & Structural Dynamics, 5 (3), 263–281. doi:10.1002/eqe.4290050305
  • Novak, M. and Sachs, K., 1973. Torsional and coupled vibrations of embedded footings. Earthquake Engineering & Structural Dynamics, 2 (1), 11–33. doi:10.1002/eqe.4290020103
  • Pao, Y.H. and Mow, C.C., 1971. Diffraction of elastic waves and dynamic stress concentrations. Santa Monica:Rand Corporation Report.
  • Pinto, F., et al. 2015. seismic demands for deep tunnels and shafts. In: 13th ISRM International Congress of Rock Mechanics. International Society for Rock Mechanics and Rock Engineering, Montreal, Canada, 1–10.
  • Roesset, J.M. 1980. Stiffness and damping coefficients of foundations. In: Proceedings ASCE Geotechnical Engineering Division National Convention, New York, United States, 1–30.
  • Selvadurai, A.P.S. 1985. Soil-pipeline interaction during ground movement. Civil Engineering in the Arctic Offshore, ARCTIC `85, 763–773.
  • Soffietti, F.P. and Pinto, F., 2022. Analytical solution for the evaluation of kinematic demands on underground linear structures subjected to S-Waves. International Journal of Geomechanics, 22 (11), 04022213. doi:10.1061/(ASCE)GM.1943-5622.0002546
  • St John, C.M. and Zahrah, T.F., 1987. Aseismic design of underground structures. Tunnelling and Underground Space Technology, 2 (2), 165–197. doi:10.1016/0886-7798(87)90011-3
  • Systèmes, D., 2017. Simulia. ABAQUS Software Version, 6, 13.
  • Sánchez-Merino, A.L., Fernández-Sáez, J., and Navarro, C., 2009. Simplified longitudinal seismic response of tunnels linings subjected to surface waves. Soil Dynamics and Earthquake Engineering, 29 (3), 579–582. doi:10.1016/j.soildyn.2008.06.003
  • Vesic, A.B., 1961. Bending of beams resting on isotropic elastic solids. Journal of the Engineering Mechanics Division, 87 (2), 35–53. doi:10.1061/JMCEA3.0000212
  • Vlasov, V.Z. and Leontiev, N.N., 1960. Beams, plates and shells on an elastic foundation. Moscow, USSR: Fizmatgiz [in Russian].
  • Winkler E. 1867. Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik, für polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc. 1st ed. Prague, Czech Republic: H. Dominicus, 1–388.
  • Wu, H.N., et al. 2018. Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints. Tunnelling and Underground Space Technology, 78, 168–177. doi:10.1016/j.tust.2018.04.009
  • Yin, J.H., 2000. Closed-form solution for reinforced Timoshenko beam on elastic foundation. Journal of Engineering Mechanics, 126 (8), 868–874. doi:10.1061/(ASCE)0733-9399(2000)126:8(868)
  • Zhang, Y., Bai, S., and Borjigin, M., 2018. Internal force of a tunnel lining induced by seismic Rayleigh wave. Tunnelling and Underground Space Technology, 72, 218–227. doi:10.1016/j.tust.2017.11.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.