77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparison analysis of temperature and thermal energy needs of two earth-based constructions in the hot semi-arid climate

, , , , &
Pages 34-53 | Received 31 May 2023, Accepted 04 Jan 2024, Published online: 12 Jan 2024

References

  • Agence nationale pour le Développement des Energies Renouvelables et de L’Efficacité Energétique. (n.d.). REGLEMENT THERMIQUE DE CONSTRUCTION AU MAROC (RTCM).
  • Agostino, D. D., Parker, D., Epifani, I., Crawley, D., & Lawrie, L. (2021). How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)? Energy, 240, 122479. doi: 10.1016/j.energy.2021.122479
  • Annabi, M., & a Hafrad, a. M. T. (2006). Estimation des performances énergétiques du bâtiment dans le contexte maghrébin. Revue des Energies Renouvelables, 9, 99–106.
  • Annunziata, E., Testa, F., Iraldo, F., & Frey, M. (2016). Environmental responsibility in building design: An Italian regional study. Journal of Cleaner Production, 112, 639–648. doi: 10.1016/j.jclepro.2015.07.137
  • Arumugam, R. S., Garg, V., Ram, V. V., & Bhatia, A. (2015). Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India. Journal of Building Engineering, 2, 52–58. doi: 10.1016/j.jobe.2015.04.004
  • ASHRAE Guideline 14-2014. (2014). Measurement of energy, demand, and water savings. ASHRAE Guideline 14-2014, 4, 1–150.
  • Belhous, M., Mastouri, H., Radoine, H., Idrissi Kaitouni, S., & Benhamou, B. (2021). Multi-objective optimization of the thickness of the thermal insulation and the windows area of a house in Benguerir, Morocco. 2021 9th International Renewable and Sustainable Energy Conference (IRSEC). doi: 10.1109/IRSEC53969.2021.9741150
  • Canadell, S., Blanco, A., & Cavalaro, S. H. P. (2016). Comprehensive design method for earthbag and superadobe structures. Materials & Design, 96, 270–282. doi: 10.1016/j.matdes.2016.02.028
  • Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and Environment, 105, 267–282. doi: 10.1016/j.buildenv.2016.05.040
  • Chen, D. (2019). Overheating in residential buildings: Challenges and opportunities. Indoor and Built Environment, 28(10), 1303–1306. doi: 10.1177/1420326X19871717
  • Dabaieh, M., Wanas, O., Hegazy, M. A., & Johansson, E. (2015). Reducing cooling demands in a hot dry climate: A simulation study for non-insulated passive cool roof thermal performance in residential buildings. Energy and Buildings, 89, 142–152. doi: 10.1016/j.enbuild.2014.12.034
  • El Kadiri, S., Idrissi Kaitouni, S., Ikken, B., & El Otmani, R. (2018). Thermal performance of a residential building in Ben Guerir city: A comparative evaluation for an optimized thermal load needs. Proceedings of 2018 6th International Renewable and Sustainable Energy Conference, IRSEC 2018. doi: 10.1109/IRSEC.2018.8703011
  • Energy Efficient Building Guideline for MENA Region. (2013). no. November.
  • EnergyPlus. (2023). Accessed: Jul. 30, 2023. [Online]. https://energyplus.net/
  • Es-sakali, N., Idrissi Kaitouni, S., Laasri, I. A., Mghazli, M. O., Cherkaoui, M., & Pfafferott, J. (2022). Assessment of the energy efficiency for a building energy model using different glazing windows in a semi-arid climate. 2022 13th International Renewable Energy Congress (IREC). doi: 10.1109/IREC56325.2022.10001934
  • Giuffrida, G., Caponetto, R., & Nocera, F. (2019). Hygrothermal properties of raw earth materials: A literature review. Sustainability, 11(19), 5342. doi: 10.3390/su11195342
  • Green TEG logger. (2023) Retrieved: Mar. 28, 2023. [Online]. https://greenteg.com/template/userfiles/files/gSKIN_KIT_U-Value_Black_Datasheet_v1.0.pdf
  • Hong, J., Shen, G. Q., Mao, C., Li, Z., & Li, K. (2016). Life-cycle energy analysis of prefabricated building components: An input-output-based hybrid model. Journal of Cleaner Production, 112(2016), 2198–2207. doi: 10.1016/j.jclepro.2015.10.030
  • Idrissi Kaitouni, S., Chahboun, R., Bouhssine, Z., Cakan, M., Brigui, J., & Ahachad, M. (2023). Simulation-based assessment of the climate change impact on future thermal energy load and indoor comfort of a light-weight ecological building across the six climates of Morocco. Thermal Science and Engineering Progress, 45, 102137. doi: 10.1016/j.tsep.2023.102137
  • Idrissi Kaitouni, S., Mghazli, M. O., Nait-Taour, A., Es-Sakali, N., El Mankibi, M., Ahachad, M., & Brigui, J. (2023). Empirical validation and analysis of the energy performance of an ecological Net Zero Energy Building (NZEB) in Benguerir-Morocco. E3S Web of Conferences, 396, 04023. doi: 10.1051/e3sconf/202339604023
  • Idrissi Kaitouni, S., Pfafferott, J., Jamil, A., Ahachad, M., & Brigui, J. (2023). A holistic digital workflow methodology to shifting towards net zero energy urban residential buildings in a semi-arid climate. Solar Energy, 263, 111959. doi:10.1016/j.solener.2023.111959
  • Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The Physical Science Basis - summary for policymakers. doi: 10.1260/095830507781076194
  • International Energy Agency (IEA). (2016). Evaluation of Embodied Energy and GHG Emissions for Building Construction (Annex 57) – Case studies demonstrating Embodied Energy and embodied grenhouse gas Emissions in buildings.
  • International Energy Agency (IEA). (2018). The future of cooling opportunities for energy-efficient air conditioning. [Online]. www.iea.org
  • International Energy Agency (IEA). (n.d.). ‘Net Zero by 2050 A Roadmap for the global energy sector’.
  • Judkoff, R., Wortman, D., O’Doherty, B., & Burch, J. (2008). A methodology for validating building energy analysis simulations (NREL Technical report 550-42059) no. April (pp. 1–192).
  • Kharbouch, A., Berrabah, S., Bakhouya, M., Gaber, J., El Ouadghiri, D., & Idrissi Kaitouni, S. (2022). Experimental and co-simulation performance evaluation of an earth-to-air heat exchanger system integrated into a smart building. Energies (Basel), no. Advances in Energy-Efficient Buildings. doi: 10.3390/en15155407
  • Lemmin-Woolfrey, U. (n.d.). Yemen’s ancient, soaring skyscraper cities. BBC. [Online]. https://www.bbc.com/travel/article/20211004-yemens-ancient-soaring-skyscraper-cities
  • Leskovar, VŽ, Žigart, M., Premrov, M., & Lukman, R. K. (2019). Comparative assessment of shape related cross-laminated timber building typologies focusing on environmental performance. Journal of Cleaner Production, 216, 482–494. doi: 10.1016/j.jclepro.2018.12.140
  • Li, J., Zheng, B., Bedra, K. B., Li, Z., & Chen, X. (2021). Evaluating the effect of window-to-wall ratios on cooling-energy demand on a typical summer day. International Journal of Environmental Research and Public Health, 18(16), 8411. doi: 10.3390/ijerph18168411
  • Lidoh, H., Idrissi Kaitouni, S., & Ikken, B. (2018). Thermal performance of a hemp concrete residential building envelope in Tangier-Morocco. Proceedings of 2018 6th International Renewable and Sustainable Energy Conference, IRSEC 2018. doi: 10.1109/IRSEC.2018.8702896.
  • Lomas, K. J., & Porritt, S. M. (2017). Overheating in buildings: lessons from research. Building Research & Information, 45(1–2), 1–18. doi: 10.1080/09613218.2017.1256136
  • MASEN. (n.d.). Atlas de la ressource solaire au Maroc. [Online]. https://solaratlas.masen.ma/
  • Minke, G. (2005). Manual Construccion En Tierra: La tierra como material de construcción y su aplicación en la arquitectura actual. 222.
  • Minneapolis Blower Door Model 3.
  • Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: Means to drastically reduce the environmental impact of construction. Building and Environment, 36(10), 1119–1126. doi: 10.1016/S0360-1323(00)00054-8
  • Najjar, M., Figueiredo, K., Palumbo, M., & Haddad, A. (2017). Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, 14, 115–126. doi: 10.1016/j.jobe.2017.10.005
  • NF EN 13829. (2009). Thermal performance of buildings – Determination of air permeability of Buildings - Fan pressurization method.
  • OPENSTUDIO. Retrieved: May 30, 2023. [Online]. https://openstudio.net/
  • R&D center GREEN ENERGY PARK. [Online]. https://www.greenenergypark.ma/
  • Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. doi: 10.1016/j.enbuild.2010.05.007
  • Rashid, M., & Ara, D. R. (2015). Modernity in tradition: Reflections on building design and technology in the Asian vernacular. Frontiers of Architectural Research, 4(1), 46–55. doi: 10.1016/j.foar.2014.11.001
  • Rasooli, A., & Itard, L. (2018). In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method. Energy and Buildings, 179, 374–383. doi: 10.1016/j.enbuild.2018.09.004
  • Rincón, L., Carrobé, A., Martorell, I., & Medrano, M. (2019). Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design. Journal of Building Engineering, 24(3), 100732. doi: 10.1016/j.jobe.2019.100732
  • Sargentis, G. F., Kapsalis, V. C., & Symeonidis, N. (2009). Earth building. Models, technical aspects, tests and environmental evaluation. 11th International Conference on Environmental Science and Technology, no. September (pp. 3–5).
  • Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249–257. doi: 10.1016/j.enbuild.2006.07.001
  • Singh, M. K., Mahapatra, S., & Atreya, S. K. (2009). Bioclimatism and vernacular architecture of north-east India. Building and Environment, 44(5), 878–888. doi: 10.1016/j.buildenv.2008.06.008
  • Singh, M. K., Mahapatra, S., & Atreya, S. K. (2010). Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India. Building and Environment, 45(2), 320–329. doi: 10.1016/j.buildenv.2009.06.009
  • Singh, M. K., Ooka, R., Rijal, H. B., & Mahapatra, S. (n.d.). Building simulation based study to improve thermal performance of a traditional residential house. [Online]. https://www.researchgate.net/publication/309722412
  • Verbeke, S., & Audenaert, A. (2018). Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews, 82, 2300–2318. doi: 10.1016/j.rser.2017.08.083
  • Wakil, M., El Mghari, H., Idrissi Kaitouni, S., & El Amraoui, R. (2023). Thermal energy performance of compressed earth building in two different cities in Moroccan semi-arid climate. Energy and Built Environment. doi: 10.1016/J.ENBENV.2023.06.008
  • World Heritage Centre. (n.d.). Earthen architecture in today’s world. International Colloquium on World Heritage Earthen Architecture Programme (WHEAP 2007-2017), UNESCO Publishing, Paris. [Online]. https://whc.unesco.org/en/series/36/
  • World Social Report 2020. (2020). doi: 10.18356/7f5d0efc-en
  • Žigart, M., Kovačič Lukman, R., Premrov, M., & Žegarac Leskovar, V. (2018). Environmental impact assessment of building envelope components for low-rise buildings. Energy, 163, 501–512. doi: 10.1016/j.energy.2018.08.149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.