293
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy

, , &
Article: 2346263 | Received 06 Dec 2023, Accepted 17 Apr 2024, Published online: 29 Apr 2024

References

  • Achu, A. L., C. D. Aju, M. Di Napoli, P. Prakash, G. Gopinath, E. Shaji, and V. Chandra. 2023. “Machine-Learning Based Landslide Susceptibility Modelling with Emphasis on Uncertainty Analysis.” Geoscience Frontiers 14 (6): 101657. https://doi.org/10.1016/j.gsf.2023.101657.
  • Ado, M., K. Amitab, A. K. Maji, E. Jasińska, R. Gono, Z. Leonowicz, and M. Jasiński. 2022. “Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey.” Remote Sensing 14 (13): 3029. https://doi.org/10.3390/rs14133029.
  • Antonielli, B., P. Mazzanti, A. Rocca, F. Bozzano, and L. Dei Cas. 2019. “A-DInSAR Performance for Updating Landslide Inventory in Mountain Areas: An Example From Lombardy Region (Italy).” Geosciences 9 (9): 364. https://doi.org/10.3390/geosciences9090364.
  • Azarafza, M., M. Azarafza, H. Akgün, P. M. Atkinson, and R. Derakhshani. 2021. “Deep Learning-Based Landslide Susceptibility Mapping.” Scientific Reports 11 (1): 24112. https://doi.org/10.1038/s41598-021-03585-1.
  • Bajni, G., C. A. S Camera, A. Brenning, and T. Apuani. 2021. “Rock Mass Geomechanical Properties to Improve Rockfall Susceptibility Assessment: A Case Study in Valchiavenna (SO).” IOP Conference Series: Earth and Environmental Science 833 (1): 012180. https://doi.org/10.1088/1755-1315/833/1/012180.
  • Bandara, A., Y. Hettiarachchi, K. Hettiarachchi, S. Munasinghe, I. Wijesinghe, and U. Thayasivam. 2020. “A Generalized Ensemble Machine Learning Approach for Landslide Susceptibility Modeling.” In Advances in Intelligent Systems and Computing, 71–93. Singapore, Springer. https://doi.org/10.1007/978-981-13-9364-8_6.
  • Baradaran, R., and H. Amirkhani. 2021. “Ensemble Learning-Based Approach for Improving Generalization Capability of Machine Reading Comprehension Systems.” Neurocomputing 466:229–242. https://doi.org/10.1016/j.neucom.2021.08.095.
  • Bradley, A. P. 1997. “The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms.” Pattern Recognition 30 (7): 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2.
  • Breiman, L. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–140. https://doi.org/10.1007/BF00058655.
  • Brovelli, M. A., M. Minghini, R. Moreno-Sanchez, and R. Oliveira. 2017. “Free and Open Source Software for Geospatial Applications (FOSS4G) to Support Future Earth.” International Journal of Digital Earth10 (4): 386–404. https://doi.org/10.1080/17538947.2016.1196505.
  • Budimir, M. E. A, P. M. Atkinson, and H. G. Lewis. 2015. “A Systematic Review of Landslide Probability Mapping Using Logistic Regression.” Landslides 12 (3): 419–436. https://doi.org/10.1007/s10346-014-0550-5.
  • Coetzee, S., I. Ivánová, H. Mitasova, and M. Brovelli. 2020. “Open Geospatial Software and Data: A Review of the Current State and a Perspective into the Future.” ISPRS International Journal of Geo-Information 9 (2): 90. https://doi.org/10.3390/ijgi9020090.
  • Colombera, L., and R. Bersezio. 2011. “Impact of the Magnitude and Frequency of Debris-Flow Events on the Evolution of An Alpine Alluvial Fan During the Last Two Centuries: Responses to Natural and Anthropogenic Controls.” Earth Surface Processes and Landforms 36 (12): 1632–1646. https://doi.org/10.1002/esp.2178.
  • Cruden, D. 1991. “A Simple Definition of a Landslide.” Bulletin of the International Association of Engineering Geology -- Bulletin de l'Association Internationale de Géologie de l'Ingénieur 43 (1): 27–29. https://doi.org/10.1007/BF02590167.
  • Cruden, D. M., and D. J. Varnes. 1996. Landslides: Investigation and Mitigation. Chapter 3-Landslide Types and Processes. Transportation research board special report (247).
  • Di Napoli, M., F. Carotenuto, A. Cevasco, P. Confuorto, D. Di Martire, M. Firpo, G. Pepe, E. Raso, and D. Calcaterra. 2020. “Machine Learning Ensemble Modelling As a Tool to Improve Landslide Susceptibility Mapping Reliability.” Landslides 17 (8): 1897–1914. https://doi.org/10.1007/s10346-020-01392-9.
  • Fang, Z., Y. Wang, L. Peng, and H. Hong. 2021. “A Comparative Study of Heterogeneous Ensemble-Learning Techniques for Landslide Susceptibility Mapping.” International Journal of Geographical Information Science 35 (2): 321–347. https://doi.org/10.1080/13658816.2020.1808897.
  • Fleuchaus, P., P. Blum, M. Wilde, B. Terhorst, and C. Butscher. 2021. “Retrospective Evaluation of Landslide Susceptibility Maps and Review of Validation Practice.” Environmental Earth Sciences 80 (15): 485. https://doi.org/10.1007/s12665-021-09770-9.
  • Freund, Y., and R. E. Schapire. 1997. “A Decision-Theoretic Generalization of On-Line Learning and An Application to Boosting.” Journal of Computer and System Sciences 55 (1): 119–139. https://doi.org/10.1006/jcss.1997.1504.
  • Friedman, J. H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” The Annals of Statistics 29 (5): 1189–1232. https://doi.org/10.1214/aos/1013203451.
  • Friedman, J., T. Hastie, and R. Tibshirani. 2000. “Additive Logistic Regression: A Statistical View of Boosting (With Discussion and a Rejoinder by the Authors).” The Annals of Statistics 28 (2): 337–407. https://doi.org/10.1214/aos/1016218223.
  • Ganaie, M. A., M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan. 2022. “Ensemble Deep Learning: A Review.” Engineering Applications of Artificial Intelligence 115:105151. https://doi.org/10.1016/j.engappai.2022.105151.
  • Guzzetti, F., A. Carrara, M. Cardinali, and P. Reichenbach. 1999. “Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy.” Geomorphology 31 (1): 181–216. https://doi.org/10.1016/S0169-555X(99)00078-1.
  • Guzzetti, F., P. Reichenbach, F. Ardizzone, M. Cardinali, and M. Galli. 2006. “Estimating the Quality of Landslide Susceptibility Models.” Geomorphology 81 (1–2): 166–184. https://doi.org/10.1016/j.geomorph.2006.04.007.
  • Habumugisha, J. M., N. Chen, M. Rahman, M. M. Islam, H. Ahmad, A. Elbeltagi, G. Sharma, S. N. Liza, and A. Dewan. 2022. “Landslide Susceptibility Mapping with Deep Learning Algorithms.” Sustainability14 (3): 1734. https://doi.org/10.3390/su14031734.
  • Huang, F., Z. Cao, J. Guo, S.-H. Jiang, S. Li, and Z. Guo. 2020. “Comparisons of Heuristic, General Statistical and Machine Learning Models for Landslide Susceptibility Prediction and Mapping.” Catena191:104580. https://doi.org/10.1016/j.catena.2020.104580.
  • Huang, F., H. Xiong, C. Yao, F. Catani, C. Zhou, and J. Huang. 2023. “Uncertainties of Landslide Susceptibility Prediction Considering Different Landslide Types.” Journal of Rock Mechanics and Geotechnical Engineering 15 (11): 2954–2972. https://doi.org/10.1016/j.jrmge.2023.03.001.
  • ISPRA. 2014. “IdroGEO -- Open Data.” https://idrogeo.isprambiente.it/app/page/open-data.
  • ISTAT. 2020. “Territory and Population. -- Regional.” https://www.asr-lombardia.it/asrlomb/en/opendata/Territory\_and\_population\_\_\_Regional.
  • Jia, G., M. Alvioli, S. L. Gariano, I. Marchesini, F. Guzzetti, and Q. Tang. 2021. “A Global Landslide Non-Susceptibility Map.” Geomorphology 389:107804. https://doi.org/10.1016/j.geomorph.2021.107804.
  • Kadavi, P. R., C. W. Lee, and S. Lee. 2018. “Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping.” Remote Sensing 10 (8): 1252. https://doi.org/10.3390/rs10081252.
  • Kavzoglu, T., A. Teke, and E. O. Yilmaz. 2021. “Shared Blocks-Based Ensemble Deep Learning for Shallow Landslide Susceptibility Mapping.” Remote Sensing 13 (23): 4776. https://doi.org/10.3390/rs13234776.
  • Kumar, C., G. Walton, P. Santi, and C. Luza. 2023. “An Ensemble Approach of Feature Selection and Machine Learning Models for Regional Landslide Susceptibility Mapping in the Arid Mountainous Terrain of Southern Peru.” Remote Sensing 15 (5): 1376. https://doi.org/10.3390/rs15051376.
  • Li, W., Z. Fang, and Y. Wang. 2022. “Stacking Ensemble of Deep Learning Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoirarea, China.” Stochastic Environmental Research and Risk Assessment 36 (8): 2207–2228. https://doi.org/10.1007/s00477-021-02032-x.
  • Li, B., K. Liu, M. Wang, Q. He, Z. Jiang, W. Zhu, and N. Qiao. 2022. “Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning.” Remote Sensing 14 (22): 5795. https://doi.org/10.3390/rs14225795.
  • Lombardia, R. 2020. “Territory and Population.” https://www.en.regione.lombardia.it/wps/portal/site/en-regione-lombardia/discover-lombardy/territory-and-population.
  • Longoni, L., M. Papini, D. Brambilla, L. Barazzetti, F. Roncoroni, M. Scaioni, and V. I. Ivanov. 2016. “Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning.” Remote Sensing 8 (3): 241. https://doi.org/10.3390/rs8030241.
  • Marchesini, I., F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti. 2014. “Non-Susceptible Landslide Areas in Italy and in the Mediterranean Region.” Natural Hazards and Earth System Sciences 14 (8): 2215–2231. https://doi.org/10.5194/nhess-14-2215-2014.
  • Mobasheri, A., H. Mitasova, M. Neteler, A. Singleton, H. Ledoux, and M. A. Brovelli. 2020. “Highlighting Recent Trends in Open Source Geospatial Science and Software.” Transactions in GIS 24 (5): 1141–1146. https://doi.org/10.1111/tgis.12703.
  • Moreno-Sanchez, R., and M. A. Brovelli. 2023. Free and Open Source Software for Geospatial Applications (FOSS4G). 1st ed., 246–255. London, Routledge. https://doi.org/10.4324/9780367855765-21.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12:2825–2830.
  • Pham, B. T., T. Nguyen-Thoi, C. Qi, T. V. Phong, J. Dou, L. S. Ho, H. V. Le, and I. Prakash. 2020. “Coupling RBF Neural Network with Ensemble Learning Techniques for Landslide Susceptibility Mapping.” Catena 195:104805. https://doi.org/10.1016/j.catena.2020.104805.
  • Rokach, L. 2010. “Ensemble-Based Classifiers.” Artificial Intelligence Review 33 (1–2): 1–39. https://doi.org/10.1007/s10462-009-9124-7.
  • Sahin, E. K. 2022. “Comparative Analysis of Gradient Boosting Algorithms for Landslide Susceptibility Mapping.” Geocarto International 37 (9): 2441–2465. https://doi.org/10.1080/10106049.2020.1831623.
  • Sun, D., X. Wu, H. Wen, and Q. Gu. 2023. “A LightGBM-based Landslide Susceptibility Model Considering the Uncertainty of Non-Landslide Samples.” Geomatics, Natural Hazards and Risk 14 (1): 2213807. https://doi.org/10.1080/19475705.2023.2213807.
  • Sun, D., J. Xu, H. Wen, and Y. Wang. 2020. “An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China.” Journal of Earth Science 31 (6): 1068–1086. https://doi.org/10.1007/s12583-020-1072-9.
  • Tantardini, D., S. Stevenazzi, and T. Apuani. 2022. “The Last Glaciation in Valchiavenna (Italian Alps): Maximum Ice Elevation Data and Recessional Glacial Deposits and Landforms.” Italian Journal of Geosciences 141 (2): 259–277. https://doi.org/10.3301/IJG.2022.13.
  • Thi Ngo, P. T., M. Panahi, K. Khosravi, O. Ghorbanzadeh, N. Kariminejad, A. Cerda, and S. Lee. 2021. “Evaluation of Deep Learning Algorithms for National Scale Landslide Susceptibility Mapping of Iran.” Geoscience Frontiers 12 (2): 505–519. https://doi.org/10.1016/j.gsf.2020.06.013.
  • Töscher, A., M. Jahrer, and R. M. Bell. 2009. “The Bigchaos Solution to the Netflix Grand Prize.” In Netflix Prize Documentation, 1–52.
  • Trigila, A., C. Iadanza, and D. Spizzichino. 2010. “Quality Assessment of the Italian Landslide Inventory Using GIS Processing.” Landslides 7 (4): 455–470. https://doi.org/10.1007/s10346-010-0213-0.
  • Turner, A. K. 2018. “Social and Environmental Impacts of Landslides.” Innovative Infrastructure Solutions 3 (1): 70. https://doi.org/10.1007/s41062-018-0175-y.
  • Van-Den-Eeckhaut, M., J. Hervás, C. Jaedicke, J. P. Malet, L. Montanarella, and F. Nadim. 2012. “Statistical Modelling of Europe-Wide Landslide Susceptibility Using Limited Landslide Inventory Data.” Landslides 9 (3): 357–369. https://doi.org/10.1007/s10346-011-0299-z.
  • Wang, Y., Z. Fang, and H. Hong. 2019. “Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China.” Science of The Total Environment 666:975–993. https://doi.org/10.1016/j.scitotenv.2019.02.263.
  • Wang, Y., L. Feng, S. Li, F. Ren, and Q. Du. 2020. “A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China.” Catena 188:104425. https://doi.org/10.1016/j.catena.2019.104425.
  • Wang, Z., J. Goetz, and A. Brenning. 2022. “Transfer Learning for Landslide Susceptibility Modeling Using Domain Adaptation and Case-Based Reasoning.” Geoscientific Model Development 15 (23): 8765–8784. https://doi.org/10.5194/gmd-15-8765-2022.
  • Wolpert, D. H. 1992. “Stacked Generalization.” Neural Networks 5 (2): 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1.
  • Xing, X., C. Wu, J. Li, X. Li, L. Zhang, and R. He. 2021. “Susceptibility Assessment for Rainfall-Induced Landslides Using a Revised Logistic Regression Method.” Natural Hazards 106 (1): 97–117. https://doi.org/10.1007/s11069-020-04452-4.
  • Xu, Q., L. Amici, V. Yordanov, and M. A. Brovelli. 2023. “Estimated No Landslide Zone for the Lombardy Region, Italy”. https://doi.org/10.5281/zenodo.8185907.
  • Xu, Q., V. Yordanov, and M. A. Brovelli. 2023a. “The Best Performing Landslide Susceptibility Maps Using Ensemble Machine Learning Models and Precipitation Data on Basin and Regional Level in Lombardy, Italy”. https://doi.org/10.5281/zenodo.8185887.
  • Xu, Q., V. Yordanov, and M. A. Brovelli. 2023b. “Landslide Influencing Factors for Landslide Susceptibility Mapping in Lombardy, Italy”. https://doi.org/10.5281/zenodo.8185734.
  • Xu, Q., V. Yordanov, and M. A. Brovelli. 2023c. “Landslide Susceptibility Maps Using Base Machine Learning Models on Basin and Regional Level in Lombardy, Italy”. https://doi.org/10.5281/zenodo.8185806.
  • Xu, Q., V. Yordanov, and M. A. Brovelli. 2023d. “Landslide Susceptibility Maps Using Ensemble Machine Learning Models on Basin and Regional Level in Lombardy, Italy”. https://doi.org/10.5281/zenodo.8185870.
  • Yilmaz, I. 2010. “Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine.” Environmental Earth Sciences 61 (4): 821–836. https://doi.org/10.1007/s12665-009-0394-9.
  • Yong, C., D. Jinlong, G. Fei, T. Bin, Z. Tao, F. Hao, W. Li, and Z. Qinghua. 2022. “Review of Landslide Susceptibility Assessment Based on Knowledge Mapping.” Stochastic Environmental Research and Risk Assessment 36 (9): 2399–2417. https://doi.org/10.1007/s00477-021-02165-z.
  • Yordanov, V., and M. Brovelli. 2020. “Comparing Model Performance Metrics for Landslide Susceptibility Mapping.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43 (3): 1277–1284. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1277-2020.
  • Yordanov, V., and M. A. Brovelli. 2021. “Application of Various Strategies and Methodologies for Landslide Susceptibility Maps on a Basin Scale: The Case Study of Val Tartano, Italy.” Applied Geomatics 13 (3): 287–309. https://doi.org/10.1007/s12518-020-00344-1.
  • Youden, W. J. 1950. “Index for Rating Diagnostic Tests.” Cancer 3 (1): 32–35. https://doi.org/10.1002/1097-0142(1950)3:1¡32::AID-CNCR2820030106¿3.0.CO;2-3.
  • Zhao, Z., Zy. Liu, and C. Xu. 2021. “Slope Unit-Based Landslide Susceptibility Mapping Using Certainty Factor, Support Vector Machine, Random Forest, CF-SVM and CF-RF Models.” Frontiers in Earth Science 9:589630. https://doi.org/10.3389/feart.2021.589630.