1,733
Views
9
CrossRef citations to date
0
Altmetric
Review

Tolerance to noninherited maternal antigens, reproductive microchimerism and regulatory T cell memory: 60 years after ‘Evidence for actively acquired tolerance to Rh antigens’

, , , , , & show all
Pages 8-20 | Received 06 Aug 2015, Accepted 07 Oct 2015, Published online: 08 Feb 2016

References

  • Owen RD. Immunogenetic Consequences of Vascular Anastomoses between Bovine Twins. Science 1945; 102:400-1; PMID:17755278; http://dx.doi.org/10.1126/science.102.2651.400
  • Lillie FR. The Theory of the Free-Martin. Science 1916; 43:611-3; PMID:17756274; http://dx.doi.org/10.1126/science.43.1113.611
  • Owen RD, Wood HR, Foord AG, Sturgeon P, Baldwin LG. Evidence for actively acquired tolerance to Rh antigens. Proc Natl Acad Sci USA 1954; 40:420-4; PMID:16589498; http://dx.doi.org/10.1073/pnas.40.6.420
  • Booth PB, Dunsford I, Grant J, Murray S. Haemolytic disease in first-born infants. Br Med J 1953; 2:41-2; PMID:13051571; http://dx.doi.org/10.1136/bmj.2.4826.41-b
  • Claas FH, Gijbels Y, van der Velden-de Munck J, van Rood JJ. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 1988; 241:1815-7; PMID:3051377; http://dx.doi.org/10.1126/science.3051377
  • Burlingham WJ, Grailer AP, Heisey DM, Claas FH, Norman D, Mohanakumar T, Brennan DC, de Fijter H, van Gelder T, Pirsch JD, et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N Engl J Med 1998; 339:1657-64; PMID:9834302; http://dx.doi.org/10.1056/NEJM199812033392302
  • Eikmans M, van Halteren AG, van Besien K, van Rood JJ, Drabbels JJ, Claas FH. Naturally acquired microchimerism: implications for transplantation outcome and novel methodologies for detection. Chimerism 2014; 5:24-39; PMID:24762743; http://dx.doi.org/10.4161/chim.28908
  • Hirayama M, Azuma E, Komada Y. Tolerogenic effect of non-inherited maternal antigens in hematopoietic stem cell transplantation. Front Immunol 2012; 3:135; PMID:22654885; http://dx.doi.org/10.3389/fimmu.2012.00135
  • van Rood JJ, Loberiza FR, Jr., Zhang MJ, Oudshoorn M, Claas F, Cairo MS, Champlin RE, Gale RP, Ringden O, Hows JM, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-vs.-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 2002; 99:1572-7; PMID:11861270; http://dx.doi.org/10.1182/blood.V99.5.1572
  • Ichinohe T, Uchiyama T, Shimazaki C, Matsuo K, Tamaki S, Hino M, Watanabe A, Hamaguchi M, Adachi S, Gondo H, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)-mismatched family members linked with long-term fetomaternal microchimerism. Blood 2004; 104:3821-8; PMID:15280193; http://dx.doi.org/10.1182/blood-2004-03-1212
  • Kanda J, Ichinohe T, Shimazaki C, Hamaguchi M, Watanabe A, Ishida H, Yoshihara T, Morimoto A, Uoshima N, Adachi S, et al. Long-term survival after HLA-haploidentical SCT from noninherited maternal antigen-mismatched family donors: impact of chronic GVHD. Bone Marrow Transplantation 2009; 44:327-9; PMID:19219076; http://dx.doi.org/10.1038/bmt.2009.18
  • Okumura H, Yamaguchi M, Kotani T, Sugimori N, Sugimori C, Ozaki J, Kondo Y, Yamazaki H, Chuhjo T, Takami A, et al. Graft rejection and hyperacute graft-versus-host disease in stem cell transplantation from non-inherited maternal-antigen-complementary HLA-mismatched siblings. Eur J Haematol 2007; 78:157-60; PMID:17313562; http://dx.doi.org/10.1111/j.1600-0609.2006.00797.x
  • Opelz G. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N Eng J Med 1999; 340:1369-70; http://dx.doi.org/10.1056/NEJM199904293401715
  • Andrassy J, Kusaka S, Jankowska-Gan E, Torrealba JR, Haynes LD, Marthaler BR, Tam RC, Illigens BM, Anosova N, Benichou G, et al. Tolerance to noninherited maternal MHC antigens in mice. J Immunol 2003; 171:5554-61; PMID:14607963; http://dx.doi.org/10.4049/jimmunol.171.10.5554
  • Aoyama K, Koyama M, Matsuoka K, Hashimoto D, Ichinohe T, Harada M, Akashi K, Tanimoto M, Teshima T. Improved outcome of allogeneic bone marrow transplantation due to breastfeeding-induced tolerance to maternal antigens. Blood 2009; 113:1829-33; PMID:19124834; http://dx.doi.org/10.1182/blood-2008-05-155283
  • Campbell DA, Jr., Lorber MI, Sweeton JC, Turcotte JG, Niederhuber JE, Beer AE. Breast feeding and maternal-donor renal allografts. Possibly the original donor-specific transfusion. Transplantation 1984; 37:340-4; PMID:6369661; http://dx.doi.org/10.1097/00007890-198404000-00004
  • Dutta P, Molitor-Dart M, Bobadilla JL, Roenneburg DA, Yan Z, Torrealba JR, Burlingham WJ. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 2009; 114:3578-87; PMID:19700665; http://dx.doi.org/10.1182/blood-2009-03-213561
  • Flomenberg N, Dupont B, O'Reilly RJ, Hayward A, Pollack MS. The use of T cell culture techniques to establish the presence of an intrauterine-derived maternal T cell graft in a patient with severe combined immunodeficiency (SCID). Transplantation 1983; 36:733-5; PMID:6606881; http://dx.doi.org/10.1097/00007890-198336060-00031
  • Geha RS, Reinherz E. Identification of circulating maternal T and B lymphocytes in uncomplicated severe combined immunodeficiency by HLA typing of subpopulations of T cells separated by the fluorescence-activated cell sorter and of Epstein Barr virus-derived B cell lines. J Immunol 1983; 130:2493-5; PMID:6304187.
  • Kadowaki J, Thompson RI, Zuelzer WW, Woolley PV, Jr., Brough AJ, Gruber D. XX-XY lymphoid chimaerism in congenital immunological deficiency syndrome with thymic alymphoplasia. Lancet 1965; 2:1152-6; PMID:4158909; http://dx.doi.org/10.1016/S0140-6736(65)92559-6
  • Pollack MS, Kapoor N, Sorell M, Kim SJ, Christiansen FT, Silver DM, Dupont B, O'Reilly RJ. DR-positive maternal engrafted T cells in a severe combined immunodeficiency patient without graft-versus-host disease. Transplantation 1980; 30:331-4; PMID:6450472; http://dx.doi.org/10.1097/00007890-198011000-00004
  • Pollack MS, Kirkpatrick D, Kapoor N, Dupont B, O'Reilly RJ. Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Eng J Med 1982; 307:662-6; http://dx.doi.org/10.1056/NEJM198209093071106
  • Thompson LF, O'Connor RD, Bastian JF. Phenotype and function of engrafted maternal T cells in patients with severe combined immunodeficiency. J Immunol 1984; 133:2513-7; PMID:6090535.
  • Muller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 2001; 98:1847-51; PMID:11535520; http://dx.doi.org/10.1182/blood.V98.6.1847
  • Alexander A, Samlowski WE, Grossman D, Bruggers CS, Harris RM, Zone JJ, Noyes RD, Bowen GM, Leachman SA. Metastatic melanoma in pregnancy: risk of transplacental metastases in the infant. J Clin Oncol 2003; 21:2179-86; PMID:12775744; http://dx.doi.org/10.1200/JCO.2003.12.149
  • Isoda T, Ford AM, Tomizawa D, van Delft FW, De Castro DG, Mitsuiki N, Score J, Taki T, Morio T, Takagi M, et al. Immunologically silent cancer clone transmission from mother to offspring. Proc Natl Acad Sci USA 2009; 106:17882-5; PMID:19822752; http://dx.doi.org/10.1073/pnas.0904658106
  • Walker JW, Reinisch JF, Monforte HL. Maternal pulmonary adenocarcinoma metastatic to the fetus: first recorded case report and literature review. Pediatr Pathol Mol Med 2002; 21:57-69; PMID:11858176; http://dx.doi.org/10.1080/15227950252774174
  • Lambert NC, Erickson TD, Yan Z, Pang JM, Guthrie KA, Furst DE, Nelson JL. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheumatism 2004; 50:906-14; PMID:15022334; http://dx.doi.org/10.1002/art.20200
  • Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, Nelson JL. Microchimerism of maternal origin persists into adult life. J Clin Invest 1999; 104:41-7; PMID:10393697; http://dx.doi.org/10.1172/JCI6611
  • Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 2010; 277:979-88; PMID:20071384; http://dx.doi.org/10.1098/rspb.2009.2084
  • Lo YM, Lau TK, Chan LY, Leung TN, Chang AM. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 2000; 46:1301-9; PMID:10973858.
  • Molitor ML, Haynes LD, Jankowska-Gan E, Mulder A, Burlingham WJ. HLA class I noninherited maternal antigens in cord blood and breast milk. Hum Immunol 2004; 65:231-9; PMID:15041161; http://dx.doi.org/10.1016/j.humimm.2003.12.006
  • Zhou L, Yoshimura Y, Huang Y, Suzuki R, Yokoyama M, Okabe M, Shimamura M. Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunol 2000; 101:570-80; http://dx.doi.org/10.1046/j.1365-2567.2000.00144.x
  • Mold JE, McCune JM. Immunological tolerance during fetal development: from mouse to man. Adv Immunol 2012; 115:73-111; PMID:22608256; http://dx.doi.org/10.1016/B978-0-12-394299-9.00003-5
  • Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee TH, Nixon DF, McCune JM. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 2008; 322:1562-5; PMID:19056990; http://dx.doi.org/10.1126/science.1164511
  • Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172:603-6; PMID:13099277; http://dx.doi.org/10.1038/172603a0
  • Molitor-Dart ML, Andrassy J, Kwun J, Kayaoglu HA, Roenneburg DA, Haynes LD, Torrealba JR, Bobadilla JL, Sollinger HW, Knechtle SJ, et al. Developmental exposure to noninherited maternal antigens induces CD4+ T regulatory cells: relevance to mechanism of heart allograft tolerance. J Immunol 2007; 179:6749-61; PMID:17982065; http://dx.doi.org/10.4049/jimmunol.179.10.6749
  • Araki M, Hirayama M, Azuma E, Kumamoto T, Iwamoto S, Toyoda H, Ito M, Amano K, Komada Y. Prediction of reactivity to noninherited maternal antigen in MHC-mismatched, minor histocompatibility antigen-matched stem cell transplantation in a mouse model. J Immunol 2010; 185:7739-45; PMID:21078914; http://dx.doi.org/10.4049/jimmunol.1001226
  • Dutta P, Burlingham WJ. Microchimerism: tolerance vs. sensitization. Curr Opin Organ Transplant 2011; 16:359-65; PMID:21666480; http://dx.doi.org/10.1097/MOT.0b013e3283484b57
  • Alhajjat AM, Lee AE, Strong BS, Shaaban AF. NK cell tolerance as the final endorsement of prenatal tolerance after in utero hematopoietic cellular transplantation. Front Pharmacol 2015; 6:51; PMID:25852555; http://dx.doi.org/10.3389/fphar.2015.00051
  • Merianos D, Heaton T, Flake AW. In utero hematopoietic stem cell transplantation: progress toward clinical application. Biol Blood Marrow Transplant 2008; 14:729-40; PMID:18541191; http://dx.doi.org/10.1016/j.bbmt.2008.02.012
  • Derderian SC, Jeanty C, Walters MC, Vichinsky E, MacKenzie TC. In utero hematopoietic cell transplantation for hemoglobinopathies. Front Pharmacol 2014; 5:278; PMID:25628564.
  • Alhajjat AM, Strong BS, Lee AE, Turner LE, Wadhwani RK, Ortaldo JR, Heusel JW, Shaaban AF. Prenatal Allospecific NK Cell Tolerance Hinges on Instructive Allorecognition through the Activating Receptor during Development. J Immunol 2015; 195(4):1506-16.
  • Durkin ET, Jones KA, Rajesh D, Shaaban AF. Early chimerism threshold predicts sustained engraftment and NK-cell tolerance in prenatal allogeneic chimeras. Blood 2008; 112:5245-53; PMID:18796629; http://dx.doi.org/10.1182/blood-2007-12-128116
  • Kroemer A, Edtinger K, Li XC. The innate natural killer cells in transplant rejection and tolerance induction. Curr Opin Organ Transplant 2008; 13:339-43; PMID:18685327; http://dx.doi.org/10.1097/MOT.0b013e3283061115
  • Ashizuka S, Peranteau WH, Hayashi S, Flake AW. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation. Exp Hematol 2006; 34:359-68; PMID:16543070; http://dx.doi.org/10.1016/j.exphem.2005.11.011
  • Kim HB, Shaaban AF, Milner R, Fichter C, Flake AW. In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy. J Pediatr Surg 1999; 34:726-9; discussion 9-30; PMID:10359172; http://dx.doi.org/10.1016/S0022-3468(99)90364-0
  • Kim HB, Shaaban AF, Yang EY, Liechty KW, Flake AW. Microchimerism and tolerance after in utero bone marrow transplantation in mice. J Surg Res 1998; 77:1-5; PMID:9698523; http://dx.doi.org/10.1006/jsre.1997.5255
  • Merianos DJ, Tiblad E, Santore MT, Todorow CA, Laje P, Endo M, Zoltick PW, Flake AW. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. J Clin Invest 2009; 119:2590-600; PMID:19652363.
  • Jeanty C, Derderian SC, Mackenzie TC. Maternal-fetal cellular trafficking: clinical implications and consequences. Curr Opin Pediatr 2014; 26:377-82; PMID:24759226; http://dx.doi.org/10.1097/MOP.0000000000000087
  • Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, Way SS. Cross-generational reproductive fitness enforced by microchimeric maternal cells. Cell 2015; 162:505-15; PMID:26213383.
  • Moon JJ, Dash P, Oguin TH, 3rd, McClaren JL, Chu HH, Thomas PG, Jenkins MK. Quantitative impact of thymic selection on Foxp3+ and Foxp3- subsets of self-peptide/MHC class II-specific CD4+ T cells. Proc Natl Acad Sci USA 2011; 108:14602-7; PMID:21873213; http://dx.doi.org/10.1073/pnas.1109806108
  • Rees W, Bender J, Teague TK, Kedl RM, Crawford F, Marrack P, Kappler J. An inverse relationship between T cell receptor affinity and antigen dose during CD4(+) T cell responses in vivo and in vitro. Proc Natl Acad Sci USA 1999; 96:9781-6; PMID:10449771; http://dx.doi.org/10.1073/pnas.96.17.9781
  • Moon J, Chu H, Pepper M, McSorley S, Jameson S, Kedl R, Jenkins M. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007; 27:203-13; PMID:17707129; http://dx.doi.org/10.1016/j.immuni.2007.07.007
  • Bakkour S, Baker CA, Tarantal AF, Wen L, Busch MP, Lee TH, McCune JM. Analysis of maternal microchimerism in rhesus monkeys (Macaca mulatta) using real-time quantitative PCR amplification of MHC polymorphisms. Chimerism 2014; 5:6-15; PMID:24451553; http://dx.doi.org/10.4161/chim.27778
  • Shaaban AF, Kim HB, Gaur L, Liechty KW, Flake AW. Prenatal transplantation of cytokine-stimulated marrow improves early chimerism in a resistant strain combination but results in poor long-term engraftment. Exp Hematol 2006; 34:1278-87; PMID:16939821.
  • Brincks E, Roberts A, Cookenham T, Sell S, Kohlmeier J, Blackman M, Woodland D. Antigen-specific memory regulatory CD4+FoxP3+ T cells control memory responses to influenza virus infection. J Immunol 2013; 190:3438-46; PMID:23467933; http://dx.doi.org/10.4049/jimmunol.1203140
  • Rosenblum M, Gratz I, Paw J, Lee K, Marshak-Rothstein A, Abbas A. Response to self antigen imprints regulatory memory in tissues. Nature 2011; 480:538-42; PMID:22121024.
  • Gratz IK, Rosenblum MD, Maurano MM, Paw JS, Truong HA, Marshak-Rothstein A, Abbas AK. Cutting edge: Self-antigen controls the balance between effector and regulatory T cells in peripheral tissues. J Immunol 2014; 192:1351-5; PMID:24442443; http://dx.doi.org/10.4049/jimmunol.1301777
  • Sanchez AM, Zhu J, Huang X, Yang Y. The development and function of memory regulatory T cells after acute viral infections. J Immunol 2012; 189:2805-14; PMID:22855712; http://dx.doi.org/10.4049/jimmunol.1200645
  • Homann D, Teyton L, Oldstone M. Differential regulation of antiviral T-cells immunity results stable CD8+ by declining CD4+ T-cell memory. Nat Med 2001; 7:913-9; PMID:11479623; http://dx.doi.org/10.1038/90950
  • Nelson RW, McLachlan JB, Kurtz JR, Jenkins MK. CD4+ T cell persistence and function after infection are maintained by low-level peptide:MHC class II presentation. J Immunol 2013; 190:2828-34; PMID:23382562; http://dx.doi.org/10.4049/jimmunol.1202183
  • Seder R, Ahmed R. Similarities and differences in CD4+ and CD8 effector and memory T cells generation. Nat Immunol 2003; 4:835-42; PMID:12942084; http://dx.doi.org/10.1038/ni969
  • Uzonna JE, Wei G, Yurkowski D, Bretscher P. Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. J Immunol 2001; 167:6967-74; PMID:11739516; http://dx.doi.org/10.4049/jimmunol.167.12.6967
  • Williams MA, Holmes BJ, Sun JC, Bevan MJ. Developing and maintaining protective CD8+ memory T cells. Immunol Rev 2006; 211:146-53; PMID:16824124; http://dx.doi.org/10.1111/j.0105-2896.2006.00389.x
  • Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004; 4:553-64; PMID:15229474; http://dx.doi.org/10.1038/nri1394
  • Erlebacher A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat Rev Immunol 2013; 13:23-33; PMID:23237963; http://dx.doi.org/10.1038/nri3361
  • Munoz-Suano A, Hamilton AB, Betz AG. Gimme shelter: the immune system during pregnancy. Immunol Rev 2011; 241:20-38; PMID:21488887; http://dx.doi.org/10.1111/j.1600-065X.2011.01002.x
  • Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 2012; 150:29-38; PMID:22770213; http://dx.doi.org/10.1016/j.cell.2012.05.031
  • Chaturvedi V, Ertelt JM, Jiang TT, Kinder JM, Xin L, Owens KJ, Jones HN, Way SS. CXCR3 blockade protects against Listeria monocytogenes infection-induced fetal wastage. J Clin Invest 2015; 125:1713-25; PMID:25751061; http://dx.doi.org/10.1172/JCI78578
  • Rowe JH, Ertelt JM, Aguilera MN, Farrar MA, Way SS. Foxp3(+) regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe 2011; 10:54-64; PMID:21767812; http://dx.doi.org/10.1016/j.chom.2011.06.005
  • Rowe JH, Ertelt JM, Xin L, Way SS. Listeria monocytogenes cytoplasmic entry induces fetal wastage by disrupting maternal FoxP3+ regulatory cell-sustained fetal tolerance. PLoS Pathog 2012; 8:e1002873; PMID:22916020; http://dx.doi.org/10.1371/journal.ppat.1002873
  • Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012; 490:102-6; PMID:23023128; http://dx.doi.org/10.1038/nature11462
  • Gammill HS, Adams Waldorf KM, Aydelotte TM, Lucas J, Leisenring WM, Lambert NC, Nelson JL. Pregnancy, microchimerism, and the maternal grandmother. PLoS One 2011; 6:e24101; PMID:21912617; http://dx.doi.org/10.1371/journal.pone.0024101
  • Gammill HS, Stephenson MD, Aydelotte TM, Nelson JL. Microchimerism in recurrent miscarriage. Cell Mol Immunol 2014; 11:589-94; PMID:25242272; http://dx.doi.org/10.1038/cmi.2014.82
  • Gammill HS, Stephenson MD, Aydelotte TM, Nelson JL. Microchimerism in women with recurrent miscarriage. Chimerism 2014; 5:103-5; PMID:25779348; http://dx.doi.org/10.1080/19381956.2015.1017241
  • Campbell D, MacGillivray I, Carr-Hill R. Pre-eclampsia in second pregnancy. Br J Obstet Gynaecol 1985; 92:131-40; PMID:3970893; http://dx.doi.org/10.1111/j.1471-0528.1985.tb01064.x
  • Trupin L, Simon L, Eskenazi B. Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiol 1996; 7:240-4; http://dx.doi.org/10.1097/00001648-199605000-00004
  • Kinder JM, Jiang TT, Clark DR, Chaturvedi V, Xin L, Ertelt JM, Way SS. Pregnancy-induced maternal regulatory T cells, bona fide memory or maintenance by antigenic reminder from fetal cell microchimerism? Chimerism 2014; 5:16-9; PMID:24553046; http://dx.doi.org/10.4161/chim.28241
  • Bianchi D, Zickwolf G, Weil G, Sylvester S, DeMaria M. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. PNAS 1996; 93:705-8; PMID:8570620; http://dx.doi.org/10.1073/pnas.93.2.705
  • Trowsdale J, Betz A. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol 2006; 7:241-6; PMID:16482172; http://dx.doi.org/10.1038/ni1317
  • Adams KM, Lambert NC, Heimfeld S, Tylee TS, Pang JM, Erickson TD, Nelson JL. Male DNA in female donor apheresis and CD34-enriched products. Blood 2003; 102:3845-7; PMID:12869496; http://dx.doi.org/10.1182/blood-2003-05-1570
  • O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 2004; 364:179-82; PMID:15246731; http://dx.doi.org/10.1016/S0140-6736(04)16631-2
  • Goulder PJ, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 2008; 8:619-30; PMID:18617886; http://dx.doi.org/10.1038/nri2357
  • Oliver MK, Telfer S, Piertney SB. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc Biol Sci 2009; 276:1119-28; PMID:19129114; http://dx.doi.org/10.1098/rspb.2008.1525
  • Israeli M, Kristt D, Nardi Y, Klein T. Genetic Considerations in Human Sex-Mate Selection: Partners Share Human Leukocyte Antigen but not Short-Tandem-Repeat Identity Markers. Am J Reprod Immunol 2014; 71:467-71; PMID:24589062; http://dx.doi.org/10.1111/aji.12213
  • Chaix R, Cao C, Donnelly P. Is mate choice in humans MHC-dependent? PLoS Genet 2008; 4:e1000184; PMID:18787687; http://dx.doi.org/10.1371/journal.pgen.1000184
  • Ober C, Weitkamp LR, Cox N, Dytch H, Kostyu D, Elias S. HLA and mate choice in humans. Am J Hum Genet 1997; 61:497-504; PMID:9326314 http://dx.doi.org/10.1086/515511
  • Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol 2012; 33:421-7; PMID:22609148; http://dx.doi.org/; http://dx.doi.org/10.1016/j.it.2012.03.002
  • Stevens AM. Microchimeric cells in systemic lupus erythematosus: targets or innocent bystanders? Lupus 2006; 15:820-6; PMID:17153857; http://dx.doi.org/10.1177/0961203306070068
  • Nelson JL, Gillespie KM, Lambert NC, Stevens AM, Loubiere LS, Rutledge JC, Leisenring WM, Erickson TD, Yan Z, Mullarkey ME, et al. Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet β cell microchimerism. PNAS 2007; 104:1637-42; PMID:17244711; http://dx.doi.org/10.1073/pnas.0606169104
  • Feitsma AL, Worthington J, van der Helm-van Mil AH, Plant D, Thomson W, Ursum J, van Schaardenburg D, van der Horst-Bruinsma IE, van Rood JJ, Huizinga TW, et al. Protective effect of noninherited maternal HLA-DR antigens on rheumatoid arthritis development. Proc Natl Acad Sci USA 2007; 104:19966-70; PMID:18077428; http://dx.doi.org/10.1073/pnas.0710260104
  • Rak JM, Maestroni L, Balandraud N, Guis S, Boudinet H, Guzian MC, Yan Z, Azzouz D, Auger I, Roudier C, et al. Transfer of the shared epitope through microchimerism in women with rheumatoid arthritis. Arthritis Rheum 2009; 60:73-80; PMID:19117368; http://dx.doi.org/10.1002/art.24224
  • van der Horst-Bruinsma IE, Hazes JM, Schreuder GM, Radstake TR, Barrera P, van de Putte LB, Mustamu D, van Schaardenburg D, Breedveld FC, de Vries RR. Influence of non-inherited maternal HLA-DR antigens on susceptibility to rheumatoid arthritis. Annal rheum Dis 1998; 57:672-5; http://dx.doi.org/10.1136/ard.57.11.672
  • Wegorzewska M, Le T, Tang Q, MacKenzie TC. Increased maternal T cell microchimerism in the allogeneic fetus during LPS-induced preterm labor in mice. Chimerism 2015:1-6; PMID:25779065; http://dx.doi.org/10.1080/19381956.2014.1002703
  • Reed AM, Picornell YJ, Harwood A, Kredich DW. Chimerism in children with juvenile dermatomyositis. Lancet 2000; 356:2156-7; PMID:11191546; http://dx.doi.org/10.1016/S0140-6736(00)03500-5
  • Artlett CM, Ramos R, Jiminez SA, Patterson K, Miller FW, Rider LG. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Childhood Myositis Heterogeneity Collaborative Group. Lancet 2000; 356:2155-6; PMID:11191545; http://dx.doi.org/10.1016/S0140-6736(00)03499-1
  • Stevens AM, Hermes HM, Rutledge JC, Buyon JP, Nelson JL. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 2003; 362:1617-23; PMID:14630442; http://dx.doi.org/10.1016/S0140-6736(03)14795-2
  • Suskind DL, Rosenthal P, Heyman MB, Kong D, Magrane G, Baxter-Lowe LA, Muench MO. Maternal microchimerism in the livers of patients with biliary atresia. BMC Gastroenterol 2004; 4:14; PMID:15285784; http://dx.doi.org/10.1186/1471-230X-4-14
  • Gammill H, Nelson J. Naturally acquired microchimerism. Int J Dev Biol 2010; 54:531-43; PMID:19924635; http://dx.doi.org/10.1387/ijdb.082767hg
  • Nijagal A, Fleck S, Hills NK, Feng S, Tang Q, Kang SM, Rosenthal P, MacKenzie TC. Decreased risk of graft failure with maternal liver transplantation in patients with biliary atresia. Am J Transplant 2012; 12:409-19; PMID:22221561; http://dx.doi.org/10.1111/j.1600-6143.2011.03895.x
  • Dutta P, Dart M, Roenneburg DA, Torrealba JR, Burlingham WJ. Pretransplant immune-regulation predicts allograft tolerance. Am J Transplant 2011; 11:1296-301; PMID:21449933; http://dx.doi.org/10.1111/j.1600-6143.2011.03484.x
  • Maurel MC, Kanellopoulos-Langevin C. Heredity-venturing beyond genetics. Biol Reprod 2008; 79:2-8; PMID:18401011; http://dx.doi.org/10.1095/biolreprod.107.065607