765
Views
0
CrossRef citations to date
0
Altmetric
Research Article

β cell acetate production and release are negligible

, , , , , , & show all
Article: 2339558 | Received 03 Nov 2023, Accepted 02 Apr 2024, Published online: 12 Apr 2024

References

  • Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol. 2021;22(2):142–14. doi:10.1038/s41580-020-00317-7.
  • Hudish LI, Reusch JEB, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest. 2019;129(10):4001–4008. doi:10.1172/JCI129188.
  • Association AD. Diagnosis and classification of diabetes mellitus. Am Diabetes Associat. 2009;32:S62.
  • Turkington RW, Weindling HK. Insulin secretion in the diagnosis of adult-onset diabetes mellitus. JAMA: Am Med Associat. 1978;240(9):833–836. doi:10.1001/jama.1978.03290090027011.
  • Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol : Elsevier Ltd. 2021;9(8):525–544. doi:10.1016/S2213-8587(21)00113-3.
  • Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD, Becker TC, Sherry AD, Newgard CB, Jensen MV. et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem. 2006;281(41):30593–30602. doi:10.1074/jbc.M511908200.
  • Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB. Metabolic cycling in control of glucose-stimulated insulin secretion. American Journal of Physiology-Endocrinology and Metabolism. 2008;295(6):E1287. doi:10.1152/ajpendo.90604.2008.
  • Gooding JR, Jensen MV, Dai X, Wenner BR, Lu D, Arumugam R, Ferdaoussi M, MacDonald P, Newgard C. Adenylosuccinate is an insulin secretagogue derived from glucose-induced purine metabolism. Cell Rep. 2015;13(1):157–167. doi:10.1016/j.celrep.2015.08.072.
  • Li C, Najafi H, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Matschinsky FM, Stanley CA. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem. 2003;278(5):2853–2858. doi:10.1074/jbc.M210577200.
  • Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM. et al. A signaling role of glutamine in insulin secretion. J Biol Chem. 2004;279(14):13393–13401. doi:10.1074/jbc.M311502200.
  • Jafari-Vayghan H, Varshosaz P, Hajizadeh-Sharafabad F, Razmi HR, Amirpour M, Tavakoli-Rouzbehani OM, Alizadeh M, Maleki V. A comprehensive insight into the effect of glutamine supplementation on metabolic variables in diabetes mellitus: A systematic review. Nutr Metab (Lond). 2020;17(1):1–14. doi:10.1186/s12986-020-00503-6.
  • Han G, Takahashi H, Murao N, Gheni G, Yokoi N, Hamamoto Y, Asahara S-I, Seino Y, Kido Y, Seino S. et al. Glutamate is an essential mediator in glutamine‐amplified insulin secretion. J Diabetes Invest. 2021;12(6):920. doi:10.1111/jdi.13497.
  • Brennan L, Shine A, Hewage C, Malthouse JPG, Brindle KM, McClenaghan N, Flatt PR, Newsholme P. A nuclear magnetic resonance-based demonstration of substantial oxidative l -Alanine metabolism and l -Alanine-enhanced glucose metabolism in a clonal pancreatic β-Cell Line. Diabetes. 2002;51(6):1714–1721. doi:10.2337/diabetes.51.6.1714.
  • Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P. L -Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic β-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond). 2005;109(5):447–455. doi:10.1042/CS20050149.
  • Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DCH, Poitout V. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes. 2007;56(4):1087–1094. doi:10.2337/db06-1532.
  • Yamada H, Yoshida M, Ito K, Dezaki K, Yada T, Ishikawa SE, Kakei M. Potentiation of glucose-stimulated insulin secretion by the GPR40–PLC–TRPC pathway in pancreatic β-Cells. Sci Rep. 2016;6(1). doi:10.1038/srep25912.
  • Fuller M, Priyadarshini M, Gibbons SM, Angueira AR, Brodsky M, Geoffrey Hayes M, Kovatcheva-Datchary P, Bäckhed F, Gilbert JA, Lowe WL. et al. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis. Am J Physiol - Endocrinol Metabol. 2015;309(10):E840. doi:10.1152/ajpendo.00171.2015.
  • McNelis JC, Lee YS, Mayoral R, Van Der Kant R, Johnson AMF, Wollam J, Olefsky JM. GPR43 potentiates β-Cell function in obesity. Diabetes. 2015;64(9):3203–3217. doi:10.2337/db14-1938.
  • Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A. et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol: Endocrine Soc. 2015;29(7):1055–1066. doi:10.1210/me.2015-1007.
  • Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med: Nat Med. 2015;21(2):173–177. doi:10.1038/nm.3779.
  • Priyadarshini M, Cole C, Oroskar G, Ludvik AE, Wicksteed B, He C, Layden BT. Obesity, diabetes and energy homeostasis: Free fatty acid receptor 3 differentially contributes to β-cell compensation under high-fat diet and streptozotocin stress. Am J Physiol - Regulat Integrat Comparat Physiol. 2020;318(4):R691. doi:10.1152/ajpregu.00128.2019.
  • Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes: Am Diabetes Associat. 2001;50(2):361–366. doi:10.2337/diabetes.50.2.361.
  • Shafaei A, Vamathevan V, Pandohee J, Lawler NG, Broadhurst D, Boyce MC. Sensitive and quantitative determination of short-chain fatty acids in human serum using liquid chromatography mass spectrometry. Anal Bioanal Chem. 2021;413(25):6333–6342. doi:10.1007/s00216-021-03589-w.
  • Martino C, Zaramela LS, Gao B, Embree M, Tarasova J, Parker SJ, Wang Y, Chu H, Chen P, Lee K-C. et al. Acetate reprograms gut microbiota during alcohol consumption. Nat Commun. 2022;13(1):1–11. Nature Publishing Group. doi:10.1038/s41467-022-31973-2.
  • Bihan DG, Rydzak T, Wyss M, Pittman K, McCoy KD, Lewis IA, Lomonaco T. Method for absolute quantification of short chain fatty acids via reverse phase chromatography mass spectrometry. PLOS One: Publ Libr Sci. 2022;17(4):e0267093. doi:10.1371/journal.pone.0267093.
  • Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA, Liu J, Lund PJ, Lopes M, Garcia BA. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell: NIH Public Access. 2018;175(2):502. doi:10.1016/j.cell.2018.08.040.
  • Lorza-Gil E, Kaiser G, Rexen Ulven E, König GM, Gerst F, Oquendo MB, Birkenfeld AL, Häring H-U, Kostenis E, Ulven T. et al. FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells. Sci Rep. 2020;10(1):16497. doi:10.1038/s41598-020-73467-5.
  • Yang G, Chen S, Deng B, Tan C, Deng J, Zhu G, Yin Y, Ren W. Implication of G Protein-Coupled Receptor 43 in intestinal inflammation: A mini-review. Front Immunol. 2018;9:1434. doi:10.3389/fimmu.2018.01434.
  • Wang S, Yuan M, Zhang L, Zhu K, Sheng C, Zhou F, Xu Z, Liu Q, Liu Y, Lu J. et al. Sodium butyrate potentiates insulin secretion from rat islets at the expense of compromised expression of β cell identity genes. Cell Death Disease. 2022;13(1):67. doi:10.1038/s41419-022-04517-1.
  • Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ. Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes Obes Metab. 2019;21(2):330–339. doi:10.1111/dom.13529.
  • Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem. 2012;287(49):41195–41209. doi:10.1074/jbc.M112.396259.
  • Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin L, Smethurst E, Mason S, Blyth K. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1):57–71. doi:10.1016/j.ccell.2014.12.002.
  • Carneiro L, Pellerin L. Monocarboxylate transporters: new players in body weight regulation. Obesity Reviews. 2015;Suppl 16(S1):55–66. doi:10.1111/obr.12256.
  • Ismaeel A, Valentino TR, Burke B, Goh J, Saliu TP, Albathi F, Owen A, McCarthy JJ, Wen Y. Acetate and succinate benefit host muscle energetics as exercise-associated post-biotics. Physiol Rep. 2023;11(21):e15848. doi:10.14814/phy2.15848.
  • Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, Ohashi N, Sato D, Fujita Y, Maegawa H. et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab. 2019;316(5):E956–e66. doi:10.1152/ajpendo.00510.2018.
  • Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang J-X, Wang Z, Yu T. et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7(1):305. doi:10.1038/s41392-022-01151-3.
  • Wang J, Wen Y, Zhao W, Zhang Y, Lin F, Ouyang C, Wang H, Yao L, Ma H, Zhuo Y. et al. Hepatic conversion of acetyl-CoA to acetate plays crucial roles in energy stress. Elife. 2023;12:12. doi:10.7554/eLife.87419.
  • Halestrap AP. The SLC16 gene family – Structure, role and regulation in health and disease. Mol Aspects Med. 2013;34(2–3):337–349. doi:10.1016/j.mam.2012.05.003.
  • Zambell KL, Fitch MD, Fleming SE. Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr. 2003;133(11):3509–3515. doi:10.1093/jn/133.11.3509.
  • Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics and oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain synthetases. Front Physiol. 2020;11:580167. doi:10.3389/fphys.2020.580167.
  • Marquard J, Welters A, Buschmann T, Barthlen W, Vogelgesang S, Klee D, Krausch M, Raffel A, Otter S, Piemonti L. et al. Association of exercise-induced hyperinsulinaemic hypoglycaemia with MCT1-expressing insulinoma. Diabetologia. 2013;56(1):31–35. doi:10.1007/s00125-012-2750-7.
  • Spegel P, Mulder H. Metabolomics analysis of nutrient metabolism in β-Cells. J Mol Biol. 2020;432(5):1429–1445. doi:10.1016/j.jmb.2019.07.020.
  • Spegel P, Andersson LE, Storm P, Sharoyko V, Gohring I, Rosengren AH, Mulder H. Unique and shared metabolic regulation in clonal β-Cells and primary islets derived from rat revealed by metabolomics analysis. Endocrinology. 2015;156(6):1995–2005. doi:10.1210/en.2014-1391.
  • Chen K, Zhang J, Huang Y, Tian X, Yang Y, Dong A. Single-cell RNA-seq transcriptomic landscape of human and mouse islets and pathological alterations of diabetes. iScience. 2022;25(11):105366. doi:10.1016/j.isci.2022.105366.
  • Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu J, Wagner B, Shen-Orr S, Klein A. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 2016;3(4):346–60 e4. doi:10.1016/j.cels.2016.08.011.
  • Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT. SCFA receptors in pancreatic β Cells: Novel diabetes targets? Trends Endocrinol Metab. 2016;27(9):653–664. doi:10.1016/j.tem.2016.03.011.
  • Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell. 2017;171(2):321–30 e14. doi:10.1016/j.cell.2017.09.004.
  • Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, Kycia I, Robson P, Stitzel ML. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes. Genome Res. 2017;27(2):208–222. doi:10.1101/gr.212720.116.