118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Data-driven modeling of ultimate load capacity of closed- and open-ended piles using machine learning

ORCID Icon, &
Pages 393-407 | Received 08 Feb 2023, Accepted 29 Jul 2023, Published online: 27 Aug 2023

References

  • Abu-Farsakh, M. Y., and H. H. Titi. 2004. “Assessment of Direct Cone Penetration Test Methods for Predicting the Ultimate Capacity of Friction Driven Piles.” Journal of Geotechnical and Geoenvironmental Engineering 130 (9): 935–944. https://doi.org/10.1061/(asce)1090-0241.
  • Alkroosh, I. S., M. Bahadori, H. Nikraz, and A. Bahadori. 2015. “Regressive Approach for Predicting Bearing Capacity of Bored Piles from Cone Penetration Test Data.” Journal of Rock Mechanics & Geotechnical Engineering 7 (5): 584–592. https://doi.org/10.1016/j.jrmge.2015.06.011.
  • Alkroosh, I., and H. Nikraz. 2011. “Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming.” Geotechnical and Geological Engineering 29 (5): 725–748. https://doi.org/10.1007/s10706-011-9413-1.
  • Alkroosh, I., and H. Nikraz. 2012. “Predicting Axial Capacity of Driven Piles in Cohesive Soils Using Intelligent Computing.” Engineering Applications of Artificial Intelligence 25 (3): 618–627. https://doi.org/10.1016/j.engappai.2011.08.009.
  • Alsamman, O. M. 1995. “The Use of CPT for Calculating Axial Capacity of Drilled Shafts. University of Illinois at Urbana-Champaign.“ ProQuest Dissertations & Theses Global (304199126). https://www.proquest.com/dissertations-theses/use-cpt-calculating-axial-capacity-drilled-shafts/docview/304199126/se-2.
  • Alzo’ubi, A. K., and F. Ibrahim. 2019. “Predicting Loading–Unloading Pile Static Load Test Curves by Using Artificial Neural Networks.” Geotechnical and Geological Engineering 37 (3): 1311–1330. https://doi.org/10.1007/s10706-018-0687-4.
  • Ardalan, H., A. Eslami, and N. Nariman-Zadeh. 2009. “Piles Shaft Capacity from CPT and CPTu Data by Polynomial Neural Networks and Genetic Algorithms.” Computers and Geotechnics 36 (4): 616–625. https://doi.org/10.1016/j.compgeo.2008.09.003.
  • Banimahd, M., S. S. Yasrobi, and P. K. Woodward. 2005. “Artificial Neural Network for Stress–Strain Behavior of Sandy Soils: Knowledge Based Verification.” Computers and Geotechnics 32 (5): 377–386. https://doi.org/10.1016/j.compgeo.2005.06.002.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/a:1010933404324.
  • Bustamante, M., and L. Gianeselli, 1982. Pile Bearing Capacity Prediction by Means of Static Penetrometer CPT, in: Proceedings of the Second European Symposium on Penetration Testing ESOPT-2. Amsterdam, May 24-27, pp. 493–500. https://www.cpt-robertson.com/PublicationsPDF/PileBearingCap%2CCPT-LCPCMethod-Bustamonteetal-ESOPT2-198.pdf
  • Cao, M.-T., N.-M. Nguyen, and W.-C. Wang. 2022. “Using an Evolutionary Heterogeneous Ensemble of Artificial Neural Network and Multivariate Adaptive Regression Splines to Predict Bearing Capacity in Axial Piles.” Engineering Structures 268:114769. https://doi.org/10.1016/j.engstruct.2022.114769.
  • Chow, F. C., R. J. Jardine, F. Brucy, and J. F. Nauroy. 1998. “Effects of Time on Capacity of Pipe Piles in Dense Marine Sand.” Journal of Geotechnical and Geoenvironmental Engineering 124 (3): 254–264. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(254).
  • Clausen, C. J. F., P. M. Aas, and K. Karlsrud. 2005. Bearing capacity of driven piles in sand, the NGI approach. In Proceedings of International Symposium on Frontiers in Offshore Geotechnics, Perth, 574–580. Retrieved from https://www.researchgate.net/publication/290599390_Bearing_capacity_of_driven_piles_in_sand_the_NGI_approach.
  • Dağdeviren, U., and B. Kaymak. 2018. “Yapay arı koloni algoritması kullanılarak betonarme istinat duvarlarının optimum maliyet tasarımını etkileyen parametrelerin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33.” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 (1). https://doi.org/10.17341/gazimmfd.406796.
  • Debnath, P., and A. K. Dey. 2018. “Prediction of Bearing Capacity of Geogrid-Reinforced Stone Columns Using Support Vector Regression.” International Journal of Geomechanics 18 (2): 1–15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001067.
  • De Ruiter, J., and F. L. Beringen. 1979. “Pile Foundations for Large North Sea Structures.” Marine Geotechnology 3 (3): 267–314. https://doi.org/10.1080/10641197909379805.
  • Ebrahimian, B., and V. Movahed. 2017. “Application of an Evolutionary-Based Approach in Evaluating Pile Bearing Capacity Using CPT Results.” Ships and Offshore Structures 12 (7): 937–953. https://doi.org/10.1080/17445302.2015.1116243.
  • Eslami, A. 1996. “Bearing Capacity of Piles from Cone Penetration Test Data. : University of Ottawa.“ University of Ottawa Theses Collection. https://ruor.uottawa.ca/handle/10393/9922.
  • Eslami, A., and B. H. Fellenius. 1997. “Pile Capacity by Direct CPT and CPTu Methods Applied to 102 Case Histories.” Canadian Geotechnical Journal 34 (6): 886–904. https://doi.org/10.1139/cgj-34-6-886.
  • Fellenius, B. H. 2001. “What Capacity Value to Choose from the Results a Static Loading Test.” Fulcrum - the Newsletter of the Deep Foundations Institute 19–22. https://www.fellenius.net/papers/230%20&%20240%20Analysis%20of%20Pile%20Capacity-DFI.pdf.
  • Friedman, J. H. 1991. “Multivariate Adaptive Regression Splines. The Annals of Statistics.” The Annals of Statistics 19 (1). https://doi.org/10.1214/aos/1176347963.
  • Gomes, Y. F., F. A. N. Verri, and D. B. Ribeiro. 2021. “Use of Machine Learning Techniques for Predicting the Bearing Capacity of Piles.” Soils and Rocks 44 (4): 1–14. https://doi.org/10.28927/SR.2021.074921.
  • Hoang, N.-D., X.-L. Tran, and T.-C. Huynh. 2022. “Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR).” Advances in Civil Engineering 2022:1–25. https://doi.org/10.1155/2022/7183700.
  • Huang, G. Bin, Q. Y. Zhu, and C. K. Siew. 2006. “Extreme Learning Machine: Theory and Applications.” Neurocomputing 70 (1–3): 489–501. https://doi.org/10.1016/j.neucom.2005.12.126.
  • Ismail, A., and D. S. Jeng. 2011. “Modelling Load–Settlement Behaviour of Piles Using High-Order Neural Network (HON-PILE Model).” Engineering Applications of Artificial Intelligence 24 (5): 813–821. https://doi.org/10.1016/j.engappai.2011.02.008.
  • Ismail, A., D. S. Jeng, and L. L. Zhang. 2013. “An Optimised Product-Unit Neural Network with a Novel PSO–BP Hybrid Training Algorithm: Applications to Load–Deformation Analysis of Axially Loaded Piles.” Engineering Applications of Artificial Intelligence 26 (10): 2305–2314. https://doi.org/10.1016/j.engappai.2013.04.007.
  • Jesswein, M., and J. Liu. 2022. “Using a Genetic Algorithm to Develop a Pile Design Method.” Soils and Foundations 62 (4): 101175. https://doi.org/10.1016/j.sandf.2022.101175.
  • Johari, A., G. Habibagahi, and A. Ghahramani. 2006. “Prediction of Soil–Water Characteristic Curve Using Genetic Programming.” Journal of Geotechnical and Geoenvironmental Engineering 132 (5): 661–665. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661).
  • Kardani, N., A. Zhou, M. Nazem, and S. L. Shen. 2020. “Estimation of Bearing Capacity of Piles in Cohesionless Soil Using Optimised Machine Learning Approaches.” Geotechnical and Geological Engineering 38 (2): 2271–2291. https://doi.org/10.1007/s10706-019-01085-8.
  • Kordjazi, A., F. Pooya Nejad, and M. B. Jaksa. 2014. “Prediction of Ultimate Axial Load-Carrying Capacity of Piles Using a Support Vector Machine Based on CPT Data.” Computers and Geotechnics 55:91–102. https://doi.org/10.1016/j.compgeo.2013.08.001.
  • Kumar, M., and P. Samui. 2019. “Reliability Analysis of Pile Foundation Using ELM and MARS.” Geotechnical and Geological Engineering 37 (4): 3447–3457. https://doi.org/10.1007/s10706-018-00777-x.
  • Lamorski, K., Y. Pachepsky, C. Sławiński, and R. T. Walczak. 2008. “Using Support Vector Machines to Develop Pedotransfer Functions for Water Retention of Soils in Poland.” Soil Science Society of America Journal 72 (5): 1243–1247. https://doi.org/10.2136/sssaj2007.0280n.
  • Lázaro-Gredilla, M., and M. K. Titsias, 2011. Variational Heteroscedastic Gaussian Process Regression, in: Proceedings of the 28th International Conference on Machine Learning, ICML, Bellevue, WA, USA, 841–848.
  • Lee, I. M., and J. H. Lee. 1996. “Prediction of Pile Bearing Capacity Using Artificial Neural Networks.” Computers and Geotechnics 18:189–200. https://doi.org/10.1016/0266-352X(95)00027-8.
  • Lehane, B. M., J. A. Schneider, and X. Xu. 2007. Development of the UWA-05 Design Method for Open and Closed Ended Driven Piles in Siliceous Sand. Geotechnical Special Publication 05. https://doi.org/10.1061/40902(221)12.
  • Moayedi, H., and S. Hayati. 2018. “Applicability of a CPT-Based Neural Network Solution in Predicting Load-Settlement Responses of Bored Pile.” International Journal of Geomechanics 18 (6): 1–11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001125.
  • Mohanty, R., and S. K. Das. 2018. “Settlement of Shallow Foundations on Cohesionless Soils Based on SPT Value Using Multi-Objective Feature Selection.” Geotechnical and Geological Engineering 36 (6): 3499–3509. https://doi.org/10.1007/s10706-018-0549-0.
  • Nguyen, H., M.-T. Cao, X.-L. Tran, T.-H. Tran, and N.-D. Hoang. 2022. “A Novel Whale Optimization Algorithm Optimized XGBoost Regression for Estimating Bearing Capacity of Concrete Piles.” Neural Computing and Applications 35 (5): 3825–3852. https://doi.org/10.1007/s00521-022-07896-w.
  • Nguyen, T., K.-D. Ly, T. Nguyen-Thoi, B.-P. Nguyen, and N.-P. Doan. 2022. “Prediction of Axial Load Bearing Capacity of PHC Nodular Pile Using Bayesian Regularization Artificial Neural Network.” Soils and Foundations 62 (5): 101203. https://doi.org/10.1016/j.sandf.2022.101203.
  • Niazi, F. S., and P. W. Mayne. 2016. “CPTu-Based Enhanced UniCone Method for Pile Capacity.” Engineering Geology 212:21–34. https://doi.org/10.1016/j.enggeo.2016.07.010.
  • Paik, K., and R. Salgado. 2003. “Determination of Bearing Capacity of Open-Ended Piles in Sand.” Journal of Geotechnical and Geoenvironmental Engineering 129 (1): 46–57. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(46).
  • Pal, M., and S. Deswal. 2010. “Modelling Pile Capacity Using Gaussian Process Regression.” Computers and Geotechnics 37 (7–8): 942–947. https://doi.org/10.1016/j.compgeo.2010.07.012.
  • Pham, T. A., V. Q. Tran, and W. Mumtaz. 2022. “Developing Random Forest Hybridization Models for Estimating the Axial Bearing Capacity of Pile.” PLOS ONE 17 (3): e0265747. https://doi.org/10.1371/journal.pone.0265747.
  • Pham, T. A., V. Q. Tran, H.-L. T. Vu, and H.-B. Ly. 2020. “Design Deep Neural Network Architecture Using a Genetic Algorithm for Estimation of Pile Bearing Capacity.” PLOS ONE 15 (12): e0243030. https://doi.org/10.1371/journal.pone.0243030.
  • Reich, Y. 1997. “Machine Learning Techniques for Civil Engineering Problems.” Computer-Aided Civil and Infrastructure Engineering 12 (4): 295–310. https://doi.org/10.1111/0885-9507.00065.
  • Sadrossadat, E., F. Soltani, S. M. Mousavi, S. M. Marandi, and A. H. Alavi. 2013. “A New Design Equation for Prediction of Ultimate Bearing Capacity of Shallow Foundation on Granular Soils.” Journal of Civil Engineering and Management 19 (Supplement_1): S78–S90. https://doi.org/10.3846/13923730.2013.801902.
  • Samui, P. 2008. “Prediction of Friction Capacity of Driven Piles in Clay Using the Support Vector Machine.” Canadian Geotechnical Journal 45 (2): 288–295. https://doi.org/10.1139/T07-072.
  • Schmertmann, J. H. 1978. Guidelines for Cone Penetration Test (Performance and Design), FHWA-TS-78-209. Washington: United States Federal Highway Administration. https://rosap.ntl.bts.gov/view/dot/958.
  • Schneider, J. A. 2007. “Analysis of Piezocone Data for Displacement Pile Design.“ The University of Western Australia. https://research-repository.uwa.edu.au/en/publications/analysis-of-piezocone-data-for-displacement-pile-design.
  • Shahin, M. A. 2010. “Intelligent Computing for Modeling Axial Capacity of Pile Foundations.” Canadian Geotechnical Journal 47 (2): 230–243. https://doi.org/10.1139/T10-048.
  • Shahin, M. A. 2016. “State-Of-The-Art Review of Some Artificial Intelligence Applications in Pile Foundations.” Geoscience Frontiers 7 (1): 33–44. https://doi.org/10.1016/j.gsf.2014.10.002.
  • Shahin, M. A., H. R. Maier, and M. B. Jaksa. 2002. “Predicting Settlement of Shallow Foundations Using Neural Networks.” Journal of Geotechnical and Geoenvironmental Engineering 128 (9): 785–793. https://doi.org/10.1061/(ASCE)1090-0241.
  • Teh, C. I., K. S. Wong, A. T. C. Goh, and S. Jaritngam. 1997. “Prediction of Pile Capacity Using Neural Networks.” Journal of Computing in Civil Engineering 11 (2): 129–138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
  • Tipping, M. E. 2000. “The Relevance Vector Machine.“ Advances in Neural Information Processing Systems 12 (NIPS 1999), Cambridge, MA, 652–658. MIT Press. https://papers.nips.cc/paper_files/paper/1999/hash/f3144cefe89a60d6a1afaf7859c5076b-Abstract.html.
  • Yang, Z., R. Jardine, W. Guo, and F. Chow. 2015. A Comprehensive Database of Tests on Axially Loaded Piles Driven in Sand, a Comprehensive Database of Tests on Axially Loaded Piles Driven in Sand. London: Academic Press. https://doi.org/10.1016/c2015-0-01032-2.
  • Yurtcu, Ş., and A. Özocak. 2016. “İnce daneli zeminlerde sikişma indisi’nin istatistiksel ve yapay zeka yöntemleri ile tahmin edilmesi.” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 (3). https://doi.org/10.17341/gummfd.95986.
  • Zhu, J. H., M. M. Zaman, and S. A. Anderson. 1998. “Modeling of Soil Behavior with a Recurrent Neural Network.” Canadian Geotechnical Journal 35 (5): 858–872. https://doi.org/10.1139/t98-042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.