61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New empirical equations for limiting void ratios as function of particle morphology properties of sand-fly ash binary assemblies

, &
Pages 495-509 | Received 25 Nov 2022, Accepted 22 Aug 2023, Published online: 05 Sep 2023

References

  • Adeli, E., B. V. Rosic, H. G. Matthie, S. Reinstadler, and D. Dinkler. 2020. “Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error.” Metals 10 (9): 1–18. https://doi.org/10.3390/met10091141.
  • Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of Particle Shape on the Mechanical Behavior of Natural Sands.” Journal of Geotechnical and Geoenviremental Engineering 142 (12): 04016071. https://doi.org/10.1061/GT.1943-5606.0001569.
  • Azaiez, H., A. Cherif Taiba, Y. Mahmoudi, and M. Belkhatir. 2021a. “Characterization of Granular Materials Treated with Fly Ash for Road Infrastructure Applications.” Transportation Infrastructure Geotechnology 8 (2): 228–253. https://doi.org/10.1007/s40515-020-00135-6.
  • Azaiez, H., A. Cherif Taiba, Y. Mahmoudi, and M. Belkhatir. 2021b. “Shear Characteristics of Fly Ash Improved Sand as an Embankment Material for Road Infrastructure Purpose.” Innovative Infrastructure Solutions 6 (3): 148. https://doi.org/10.1007/s41062-021-00517-w.
  • Bareither, C. A., T. B. Edil, C. H. Benson, and D. M. Mickelson. 2008. “Geological and Physical Factors Affecting the Friction Angle of Compacted Sands.” Journal of Geotechnical and Geoenvironmental Engineering 134 (10): 1476–1489. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1476).
  • Chang, C. S., Y. Deng, and M. Meidani. 2018. “A Multi-Variable Equation for Relationship Between Limiting Void Ratios of Uniform Sands and Morphological Characteristics of Their Particles.” Engineering Geology 237:21–31. https://doi.org/10.1016/j.enggeo.2018.02.003.
  • Chang, C. S., Y. Deng, and Z. Yang. 2017. “Modeling of Minimum Void Ratio for Granular Soil with Effect of Particle Size Distribution.” Journal of Engineering Mechanics 143 (9): 4017060. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001270.
  • Chang, C. S., J.-Y. Wang, and L. Ge. 2015. “Modeling of Minimum Void Ratio for Sand–Silt Mixtures.” Engineering Geology 196:293–304. https://doi.org/10.1016/j.enggeo.2015.07.015.
  • Cherif Taiba, A., Y. Mahmoudi, H. Azaiez, and M. Belkhatir. 2022. “Impact of the Overall Regularity and Related Granulometric Characteristics on the Critical State Soil Mechanics of Natural Sands: A State-Of-The Art Review.” Geomechanics & Geoengineering: An International Journal 18 (4): 299–308. https://doi.org/10.1080/17486025.2022.2044076.
  • Cherif Taiba, A., Y. Mahmoudi, M. Belkhatir, A. Kadri, and T. Tom Schanz. 2017. “Experimental Characterization of the Undrained Instability and Steady State of Silty Sand Soils Under Monotonic Loading Conditions.” International Journal of Geotechnical Engineering 12 (5): 513–529. https://doi.org/10.1080/19386362.2017.1302643.
  • Cherif Taiba, A., Y. Mahmoudi, M. Belkhatir, and T. Schanz. 2018. “Experimental Investigation into the Influence of Roundness and Sphericity on the Undrained Shear Response of Silty Sand Soils.” Geotechnical Testing Journal 41 (3): 20170118. https://doi.org/10.1520/GTJ20170118.
  • Cherif Taiba, A., Y. Mahmoudi, L. Hazout, M. Baille, and W. Belkhatir. 2019. “Effects of Gradation on the Mobilized Friction Angle for the Instability and Steady States of Sand-Silt Mixtures: Experimental Evidence.” Acta Geotechnica Slovenica 16 (1): 79–95. https://doi.org/10.18690/actageotechslov.16.1.79-95.2019.
  • Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands.” Journal of Geotechnical and Geoenvironmental Engineering 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
  • Cubrinovski, M., and K. Ishihara. 2002. “Maximum and Minimum Void Ratio Characteristics of Sands.” Soils & Foundations 42 (6): 65–78. https://doi.org/10.3208/sandf.42.6_65.
  • Doumi, K., A. Cherif Taiba, Y. Mahmoudi, M. Belkhatir, and W. Baille. 2020. “Experimental Investigation on the Influence of Relative Effective Diameter on Ultimate Shear Strength of Partially Saturated Granular Soils.” Acta Geotechnica Slovenica 17 (1): 56–70. https://doi.org/10.18690/actageotechslov.17.1.56-70.2020.
  • Doumi, K., Y. Mahmoudi, A. Cherif Taiba, W. Baille, and M. Belkhatir. 2021. “Infuence of the Particle Size on the Flow Potential and Friction Index of Partially Saturated Sandy Soils.” Transportation Infrastructure Geotechnology 9 (5): 606–630. https://doi.org/10.1007/s40515-021-00193-4.
  • Guo, P., and X. Su. 2007. “Shear Sterngth, Interparticle Locking, and Dilatancy of Granular Materials.” Canadian Geotechnical Journal 44 (5): 579–591. https://doi.org/10.1139/t07-010.
  • Hazout, L., A. Cherif Taiba, Y. Mahmoudi, and M. Belkhatir. 2022. “Deformation Characteristics of Natural River Sand Under Compression Loading Incorporating Extreme Particle Diameters Impacts.” Marine Georesources & Geotechnology 1–19. https://doi.org/10.1080/1064119X.2022.2122090.
  • Kato, Y., Y. Nakata, M. Hyodo, and H. Murata. 2001. “One-Dimensional Compression Properties of Crushable Soils Related to Particle Characteristics.” In Proc., 14th Southeast Asian Geotechnical Conf., Geotechnical Engineering Meeting Society’s Meet, edited by K. K. S. Ho and K. S. Li, 527–532. Pathumthani, Thailand: Southeast Asian Geotechnical Society (SEAGS).
  • Keramatikerman, M., and A. Chegenizadeh. 2017. “Effect of Particle Shape on Monotonic Liquefaction: Natural and Crushed Sand.” Experimental Mechanics 57 (8): 1341–1348. https://doi.org/10.1007/s11340-017-0313-z.
  • Krumbein, W. C. 1941. “Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles.” Journal of Sedimentary Petrology 11 (2): 64–72. https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D.
  • Lees, G. 1964. “A New Method for Determining the Angularity of Particles.” Sedimentology 3 (1): 2–21. https://doi.org/10.1111/j.1365-3091.1964.tb00271.x.
  • Maroof, M. A., A. Mahboubi, E. Vincens, and A. Noorzad. 2022. “Effects of Particle Morphology on the Minimum and Maximum Void Ratios of Granular Materials.” Granular Matter 24 (1): 41. https://doi.org/10.1007/s10035-021-01189-0.
  • Meidani, M., C. S. Chang, and D. Yibing. 2017. “On Active and Inactive Voids and a Compression Model for Granular Soils.” Engineering Geology 222:156–167. https://doi.org/10.1016/j.enggeo.2017.03.006.
  • Miura, K., K. Maiida, M. Furukawa, and S. Toki. 1997. “Physical Characteristics of Sands with Different Primary Properties.” Soils & Foundations 37 (3): 53–64. https://doi.org/10.3208/sandf.37.3_53.
  • Patra, C. R., N. Sivakugan, B. M. Das, and S. K. Rout. 2010. “Correlations for Relative Density of Clean Sand with Median Grain Size and Compaction Energy.” International Journal of Geotechnical Engineering 4 (2): 195–203. https://doi.org/10.3328/IJGE.2010.04.02.195-203.
  • Rousé, P. C., R. J. Fannin, and D. A. Shuttle. 2008. “Influence of Roundness on the Void Ratio and Strength of Uniform Sand.” Géotechnique 58 (3): 227–231. https://doi.org/10.1680/geot.2008.58.3.227.
  • Rousé, P. C., R. J. Fannin, and M. Taiebat. 2014. “Sand Strength for Backanalysis of Pull-Out Tests at Large Displacement.” Géotechnique 64 (4): 320–324. https://doi.org/10.1680/geot.13.T.021.
  • Santamarina, J. C., and G. C. Cho. 2004. “Soil Behaviour: The Role of Particle Shape.” In Advances in Geotechnical Engineering: The Skempton Conference, edited by R. J. Jardine, D. M. Potts, and K. G. Higgins, 604–617. Vol. 1. London: Thomas Telford.
  • Sarkar, D., D. König, and M. Goudarzy. 2019. “The Influence of Particle Characteristics on the Index Void Ratios in Granular Materials.” Particuology 46:1–13. https://doi.org/10.1016/j.partic.2018.09.010.
  • Shimobe, S., and N. Moroto. 1995. “A New Classification Chart for Sand Liquefaction.” In Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, edited by K. Ishihara, 315–320. Tokyo, Japan: Rotterdam, Balkema.
  • Taibi, A., Y. Mahmoudi, A. Cherif Taiba, H. Azaiez, and M. Belkhatir. 2023. “Fly Ash Effects on the Stress-Dilatancy Relation of Coarse Soils: Particle Morphology Role”.” Geotechnical and Geological Engineering 41 (4): 2517–2536. https://doi.org/10.1007/s10706-023-02412-w.
  • Tatsuoka, F., H. Di Benedetto, T. Enomoto, S. Kawabe, and W. Kongkitkul. 2008. “Various Viscosity Types of Geomaterials in Shear and Their Mathematical Expression.” Soils & Foundations 48 (1): 41–60. https://doi.org/10.3208/sandf.48.41.
  • Tsomokos, A., and V. N. Georgiannou. 2009. “Effect of Grain Shape and Angularity on the Undrained Response of Fine Sands.” Canadian Geotechnical Journal 47 (5): 539–551. https://doi.org/10.1139/T09-121.
  • Uday, K. V., G. P. Padmakumar, and D. N. Singh. 2013. “Some Studies on Morphology of the Coarse-Grained Soils.” Engineering Geology 152 (1): 48–55. https://doi.org/10.1016/j.enggeo.2012.10.001.
  • Wadell, H. 1932. “Volume, Shape, and Roundness of Rock Particles.” The Journal of Geology 40 (5): 443–451. https://doi.org/10.1086/623964.
  • Yang, J., and L. M. Wei. 2015. “Static Liquefaction of Granular Soils: The Role of Grain Shape and Size.” Geomechanics and Geoengineering. https://doi.org/10.1007/978-3-319-13506-9_29.
  • Yoshimoto, N., M. Hyodo, M. Nakata, R. Orense, T. Hongo, and A. Ohnaka. 2012. “Evaluation of Shear Strength and Mechanical Properties of Granulated Coal Ash Based on Single Particle Strength.” Soils & Foundations 52 (2): 321–334. https://doi.org/10.1016/j.sandf.2012.02.009.
  • Youd, T. L. 1973. “Factors Controlling Maximum and Minimum Densities of Sands.” ASTM Special Technical Publication 98–112.
  • Zhang, X., B. A. Baudet, and T. Yao. 2020. “The Influence of Particle Shape and Mineralogy on the Particle Strength, Breakage and Compressibility.” International Journal of Geo-Engineering 11 (1). https://doi.org/10.1186/s40703-020-0108-4.
  • Zheng, J., and R. D. Hryciw. 2016. “Index Void Ratios of Sands from Their Intrinsic Properties.” Journal of Geotechnical and Geoenvironmental Engineering 142 (12): 6016019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.