117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of deformation behaviour of uniaxially loaded sand grains using a novel high-resolution imaging apparatus and ensemble machine learning models

ORCID Icon, &
Pages 464-479 | Received 13 Jun 2023, Accepted 15 Sep 2023, Published online: 02 Oct 2023

References

  • Abadi, M., P. Barham, J. Chen, et al 2016 Tensorflow: A System for Large-Scale Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp 265–283
  • Afifi, S. S., and F. E. Richart. 1973. “Stress-History Effects on Shear Modulus of Soils.” Soils & Foundations 13 (1): 77–95. https://doi.org/10.3208/sandf1972.13.77.
  • Alshibli, K. A., and M. I. Alsaleh. 2004. “Characterizing Surface Roughness and Shape of Sands Using Digital Microscopy.” Journal Computer Civil Engineering 18 (1): 36–45. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(36).
  • Anderson, D., and K. Stokoe. 1978. “Shear Modulus: A Time-Dependent Soil Property.” Dynamic Geotechnical Testing, ASTM STP 654 American Society for Testing and Materials 66–90.
  • Baxter, C. D. P., and J. K. Mitchell. 2004. “Experimental Study on the Aging of Sands.” Journal Geotechnical Geo Environmental Engineering 130 (10): 1051–1062. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(1051).
  • Bolton, M. D., Y. Nakata, and Y. P. Cheng. 2008. “Micro- and Macro-Mechanical Behaviour of DEM Crushable Materials.” Géotechnique 58 (6): 471–480. https://doi.org/10.1680/geot.2008.58.6.471.
  • Bowman, E. T., and K. Soga. 2005. “Mechanisms of Setup of Displacement Piles in Sand: Laboratory Creep Tests.” Canadian Geotechnical Journal 42 (5): 1391–1407. https://doi.org/10.1139/t05-063.
  • Braspenning, P. J., F. Thuijsman, and Weijters AJMM. 1995. Artificial Neural Networks: An Introduction to ANN Theory and Practice. Springer Science & Business Media. https://doi.org/10.1007/BFb0027019.
  • Charlie, W. A., M. F. J. Rwebyogo, and D. O. Doehring. 1992. “Time‐Dependent Cone Penetration Resistance Due to Blasting.” Journal Geotechnical Engineering 118 (8): 1200–1215. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1200).
  • Cheng, Y. P., M. D. Bolton, and Y. Nakata. 2004. “Crushing and Plastic Deformation of Soils Simulated Using DEM.” Géotechnique 54 (2): 131–141. https://doi.org/10.1680/geot.2004.54.2.131.
  • Choi, H., H. Kim, H. J. Jeong, et al. 2021. “Investigation of the Unloading Yield Effect in 7075 Al Alloys Based on Microstructural and Digital Image Correlation Analysis.” Materials Characterization 173:110963. https://doi.org/10.1016/j.matchar.2021.110963.
  • Chollet, F. 2015. “Keras.” others.
  • Chow, F. C., R. J. Jardine, F. Brucy, and J. F. Nauroy. 1998. “Effects of Time on Capacity of Pipe Piles in Dense Marine Sand.” Journal Geotechnical Geo Environmental Engineering 124 (3): 254–264. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(254).
  • Chow, F. C., R. J. Jardine, J. F. Nauroy, and F. Brucy. 1997. “Time-Related Increases in the Shaft Capacities of Driven Piles in Sand.” Géotechnique 47 (2): 353–361. https://doi.org/10.1680/geot.1997.47.2.353.
  • Chu, T. C., W. F. Ranson, and M. A. Sutton. 1985. “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics.” Experimental Mechanics 25 (3): 232–244. https://doi.org/10.1007/BF02325092.
  • Denisov, N. Y., B. F. Reltov 1961 The Influence of Certain Processes on the Strength of Soils. In: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. pp 75–78
  • DIN EN 10088-2. 2014. Stainless Steels–Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion Resisting Steels for General Purposes.
  • Dowding, C. H., and R. D. Hryciw. 1986. “A Laboratory Study of Blast Densification of Saturated Sand.” Journal Geotechnical Engineering 112 (2): 187–199. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:2(187).
  • Géron, A. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.
  • Hardin, B. O. 1985. “Crushing of Soil Particles.” Journal Geotechnical Engineering 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
  • Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, et al. 2020. “Array Programming with NumPy.” Nature 585 (7825): 357–362. https://doi.org/10.1038/s41586-020-2649-2.
  • He, H., W. Chen, Z. Yin, et al. 2021. “A Micromechanical-Based Study on the Tribological and Creep-Relaxation Behavior of Sand-FRP Composite Interfaces.” Composite Structures 275:114423. https://doi.org/10.1016/j.compstruct.2021.114423.
  • He, X., H. Xu, H. Sabetamal, and D. Sheng. 2020. “Machine Learning Aided Stochastic Reliability Analysis of Spatially Variable Slopes.” Computers and Geotechnics 126:103711. https://doi.org/10.1016/j.compgeo.2020.103711.
  • Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation 9 (8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
  • Hyodo, M., Y. Nakata, N. Aramaki, et al 2000 Liquefaction and Particle Crushing of Soil. In: 12th World Conf. on Earthquake Engineering. p Paper 0278 (1–8)
  • Jardine, R. J., J. R. Standing, and F. C. Chow. 2006. “Some Observations of the Effects of Time on the Capacity of Piles Driven in Sand.” Géotechnique 56 (4): 227–244. https://doi.org/10.1680/geot.2006.56.4.227.
  • Jessen, B. A.-M. 2023. “Combined Analysis on Creep and Aging Effects in Granular Material.” Technische Universität München.
  • Jessen, B. A.-M., R. Cudmani, and S. Vogt. 2023. “Creep and Ageing of Granular Materials Under Isotropic Pressure.” Acta Geotech 0123456789. https://doi.org/10.1007/s11440-023-02015-y.
  • Joshi, R. C., G. Achari, S. R. Kaniraj, and H. Wijeweera. 1995. “Effect of Aging on the Penetration Resistance of Sands.” Canadian Geotechnical Journal 32 (5): 767–782. https://doi.org/10.1139/t95-075.
  • Kang, J., C. Zhaofeng, L. Zhaoyu, and S. Y. Wang. 2021. “Characterization of Particle Orientation of Kaolinite Samples Using the Deep Learning-Based Technique.” Acta Geotech 0123456789. https://doi.org/10.1007/s11440-021-01266-x.
  • Kasyap, S. S., S. Li, and K. Senetakis. 2021. “Investigation of the Mechanical Properties and the Influence of Micro-Structural Characteristics of Aggregates Using Micro-Indentation and Weibull Analysis.” Construction and Building Materials 271:121509. https://doi.org/10.1016/j.conbuildmat.2020.121509.
  • Kasyap, S. S., and K. Senetakis. 2021. “Micromechanical-Based Experimental and Analytical Studies on Rate Effects and Stick-Slip Instability of Smooth Quartz Surfaces in the Presence of Plastic and Non-Plastic Gouges.” International Journal Numerical Analytical Methods Geomechanics 45 (6): 776–793. https://doi.org/10.1002/nag.3178.
  • Kasyap, S. S., K. Senetakis, M. R. Coop, and J. Zhao. 2021. “Micromechanical Behaviour in Shearing of Reproduced Flat LBS Grains with Strong and Weak Artificial Bonds.” Acta Geotechnica 16 (5): 1355–1376. https://doi.org/10.1007/s11440-020-01101-9.
  • Kolarik, T., and G. Rudorfer. 1994. “Time Series Forecasting Using Neural Networks.” ACM Sigapl Apl Quote Quad 25 (1): 86–94. https://doi.org/10.1145/190468.190290.
  • Leung, C. F., F. H. Lee, and N. S. Yet. 1996. “The Role of Particle Breakage in Pile Creep in Sand.” Canadian Geotechnical Journal 33 (6): 888–898. https://doi.org/10.1139/t96-119.
  • Liu, Z., J. Shao, W. Xu, and Q. Wu. 2015. “Indirect Estimation of Unconfined Compressive Strength of Carbonate Rocks Using Extreme Learning Machine.” Acta Geotechnica 10 (5): 651–663. https://doi.org/10.1007/s11440-014-0316-1.
  • Liu, S., and J. Wang. 2018. “Static Fatigue of Sand Particles.” Canadian Geotechnical Journal 55 (11): 1682–1687. https://doi.org/10.1139/cgj-2017-0543.
  • Makasis, N., G. A. Narsilio, and A. Bidarmaghz. 2018. “A Machine Learning Approach to Energy Pile Design.” Computers and Geotechnics 97:189–203. https://doi.org/10.1016/j.compgeo.2018.01.011.
  • McDowell, G. R., and J. J. Khan. 2003. “Creep of Granular Materials.” Granular Matter 5 (3): 115–120. https://doi.org/10.1007/s10035-003-0142-x.
  • McKinney, W., others 2010 Data Structures for Statistical Computing in Python. In: Proceedings of the 9th Python in Science Conference. pp 51–56
  • Michalowski, R. L., Z. Wang, and S. S. Nadukuru. 2018. “Maturing of Contacts and Ageing of Silica Sand.” Géotechnique 68 (2): 133–145. https://doi.org/10.1680/jgeot.16.P.321.
  • Michalowski, R. L., Z. Wang, S. S. Nadukuru, et al. 2019. “Maturing of Contacts and Ageing of Silica Sand.” Géotechnique 69 (8): 748–749. https://doi.org/10.1680/jgeot.18.D.004.
  • Mitchell, J. K. 2008 Aging of Sand – a Continuing Enigma? In: 6th International conference on Case Histories in Geotechnical Engineering. pp 1–21
  • Mitchell, J. K., and Z. V. Solymar. 1984. “Time‐Dependent Strength Gain in Freshly Deposited or Densified Sand.” Journal Geotechnical Engineering 110 (11): 1559–1576. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1559).
  • Nakata, Y., M. Hyodo, A. F. L. Hyde, Y. Kato, and H. Murata. 2001. “Microscopic Particle Crushing of Sand Subjected to High Pressure One-Dimensional Compression.” Soils & Foundations 41 (1): 69–82. https://doi.org/10.3208/sandf.41.69.
  • Nakata, Y., Y. Kato, M. Hyodo, Adrian F.L. Hyde, and H. Murata. 2001. “One-Dimensional Compression Behaviour of Uniformly Graded Sand Related to Single Particle Crushing Strength.” Soils & Foundations 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
  • Nardelli, V., and M. R. Coop. 2016. “The Micromechanical Behaviour of a Biogenic Carbonate Sand.” Procedia Engineering 158:39–44. https://doi.org/10.1016/j.proeng.2016.08.402.
  • Nardelli, V., and M. R. Coop. 2018. “The Experimental Contact Behaviour of Natural Sands: Normal and Tangential Loading.” Géotechnique 11:1–15. https://doi.org/10.1680/jgeot.17.P.167.
  • Nardelli, V., M. R. Coop, J. E. Andrade, and F. Paccagnella. 2017. “An Experimental Investigation of the Micromechanics of Eglin Sand.” Powder Technology 312:166–174. https://doi.org/10.1016/j.powtec.2017.02.009.
  • Park, S. B., J. W. Lee, and S. K. Kim. 2004. “Content-Based Image Classification Using a Neural Network.” Pattern Recognition Letters 25 (3): 287–300. https://doi.org/10.1016/j.patrec.2003.10.015.
  • Park, D., and R. L. Michalowski. 2020. “Time-Dependent Model for Sand Grain Deflection Including Contact Maturing Under Sustained Load.” Granular Matter 22 (2): 1–15. https://doi.org/10.1007/s10035-020-1008-1.
  • Pelz, G. 2010. “Die Berücksichtigung einer Vorbelastung bei der Mobilisierung des passiven Erddruckes feinkörniger Böden.”
  • Pooya Nejad, F., and M. B. Jaksa. 2017. “Load-Settlement Behavior Modeling of Single Piles Using Artificial Neural Networks and CPT Data.” Computers and Geotechnics 89:9–21. https://doi.org/10.1016/j.compgeo.2017.04.003.
  • Rezaie-Balf, M., and O. Kisi. 2018. “New Formulation for Forecasting Streamflow: Evolutionary Polynomial Regression Vs. Extreme Learning Machine.” Hydrology Research 49 (3): 939–953. https://doi.org/10.2166/nh.2017.283.
  • Rogers, B. T., C. A. Graham, M. G. Jefferies 1990 Compaction of Hydraulic Fill Sand in Molikpaq Core. In: Proceedings of the 43rd Canadian Geotechnical Conference: Prediction and Performance in Geotechnique. pp 567–575
  • Russell, A. R., D. Muir Wood, and M. Kikumoto. 2009. “Crushing of Particles in Idealised Granular Assemblies.” Journal of the Mechanics and Physics of Solids 57 (8): 1293–1313. https://doi.org/10.1016/j.jmps.2009.04.009.
  • Sajedi, S., S. M. Asce, R. Y. Liang, and F. Asce. 2016. “New Formulation of Compressive Strength of Preformed-Foam Cellular Concrete.” An Evolutionary Approach 28 (10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001602.
  • Sandeep, C. S., S. Li, and K. Senetakis. 2021. “Scale and Surface Morphology Effects on the Micromechanical Contact Behavior of Granular Materials.” Tribology International 159:106929. https://doi.org/10.1016/j.triboint.2021.106929.
  • Sandeep, C. S., L. Luo, and K. Senetakis. 2020. “Effect of Grain Size and Surface Roughness on the Normal Coefficient of Restitution of Single Grains.” In Materials (Basel). Vol. 13. https://doi.org/10.3390/ma13040814.
  • Schmertmann, J. H., James K. Mitchell, and Zoltan V. Solymar. 1987. “Discussion of “ Time-Dependent Strength Gain in Freshly Deposited or Densified Sand ” by James K. Mitchell and Zoltan V. Solymar (November, 1984).” Journal Geotechnical Engineering 113 (2): 173–175. November. 1984. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:2(173).
  • Senetakis, K., and M. Coop. 2014. “The Development of a New Micro-Mechanical Inter-Particle Loading Apparatus.” Geotechnical Testing Journal 37 (6): 20120187–20121039. https://doi.org/10.1520/GTJ20120187.
  • Senetakis, K., M. R. Coop, and M. C. Todisco. 2013. “The Inter-Particle Coefficient of Friction at the Contacts of Leighton Buzzard Sand Quartz Minerals.” Soils & Foundations 53 (5): 746–755. https://doi.org/10.1016/j.sandf.2013.08.012.
  • Senetakis, K., and C. S. Sandeep. 2017. “Experimental Study of Sand Grains Behavior at Their Contacts with Force- and Displacement-Controlled Sliding Tests.” Undergr Sp 2 (1): 38–44. https://doi.org/10.1016/j.undsp.2017.03.001.
  • Solymar, Z. V. 1984. “Compaction of Alluvial Sands by Deep Blasting.” Canadian Geotechnical Journal 21 (2): 305–321. https://doi.org/10.1139/t84-032.
  • Solymar, Z. V., B. C. Iloabachie, R. C. Gupta, and L. R. Williams. 1984. “Earth Foundation Treatment at Jebba Dam Site.” Journal Geotechnical Engineering 110 (10): 1415–1430. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:10(1415).
  • Take, W. A. 2015. “Thirty-Sixth Canadian Geotechnical Colloquium: Advances in Visualization of Geotechnical Processes Through Digital Image Correlation.” Canadian Geotechnical Journal 52 (9): 1199–1220. https://doi.org/10.1139/cgj-2014-0080.
  • Takei, M., O. Kusakabe, and T. Hayashi. 2001. “Time-Dependent Behavior of Crushable Materials in One-Dimensional Compression Tests.” Soils & Foundations 41 (1): 97–121. https://doi.org/10.3208/sandf.41.97.
  • Tang, N., P. Soltani, C. Pinna, D. Wagg, and R. Whear. 2018. “Ageing of a Polymeric Engine Mount Investigated Using Digital Image Correlation.” Polymer Testing 71:137–144. https://doi.org/10.1016/j.polymertesting.2018.08.036.
  • Tophel, A., J. P. Walker, T. T. Dutta, and J. Kodikara. 2022. “Theory-Guided Machine Learning to Predict Density Evolution of Sand Dynamically Compacted Under Ko Condition.” Acta Geotechnica 17 (8): 3479–3497. https://doi.org/10.1007/s11440-021-01431-2.
  • Van Rossum, G., and F. L. Drake Jr. 1995. “Python Reference Manual.” Centrum voor Wiskunde en Informatica Amsterdam.
  • Wang, W., and M. R. Coop. 2016. “An Investigation of Breakage Behaviour of Single Sand Particles Using a High-Speed Microscope Camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
  • Wang, P., X. Guo, Y. Sang, L. Shao, Z. Yin, and Y. Wang. 2020. “Measurement of Local and Volumetric Deformation in Geotechnical Triaxial Testing Using 3D-Digital Image Correlation and a Subpixel Edge Detection Algorithm.” Acta Geotechnica 15 (10): 2891–2904. https://doi.org/10.1007/s11440-020-00975-z.
  • Wang, Z., and R. L. Michalowski. 2018. “An Apparatus for Testing Static Fatigue at Sand Grain Contacts.” Geotechnical Testing Journal 41 (3): 20170251. https://doi.org/10.1520/GTJ20170251.
  • Wang, Y., and S. Salehi. 2015. “Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach.” Journal of Energy Resources Technology 137 (6). https://doi.org/10.1115/1.4030847.
  • Wang, Y., C. Shao, and Y. Xu. 2017. “Fractal Crushing of Solid Particles.” KSCE Journal of Civil Engineering 21 (3): 987–993. https://doi.org/10.1007/s12205-016-0508-3.
  • Waskom, M. L. 2021. “Seaborn: Statistical Data Visualization.” Journal of Open Source Software 6 (60): 3021. https://doi.org/10.21105/joss.03021.
  • Yao, T., B. A. Baudet, and S. D. N. Lourenço. 2019. “Quantification of the Surface Roughness of Quartz Sand Using Optical Interferometry.” Meccanica 54 (4–5): 741–748. https://doi.org/10.1007/s11012-018-0879-2.
  • York, D. L., W. G. Brusey, F. M. Clémente, and S. K. Law. 1994. “Setup and Relaxation in Glacial Sand.” Journal Geotechnical Engineering 120 (9): 1498–1513. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1498).
  • Zhang, P., and Z. Y. Y. Jin. 2021. “Modelling the Mechanical Behaviour of Soils Using Machine Learning Algorithms with Explicit Formulations.” Acta Geotechnica 17 (4). https://doi.org/10.1007/s11440-021-01170-4.
  • Zhang, P., Z.-Y. Yin, and Y.-F. Jin. 2021. “State-Of-The-Art Review of Machine Learning Applications in Constitutive Modeling of Soils. Arch Comput Methods Eng 1–26.” https://doi.org/10.1007/s11831-020-09524-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.