188
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Polyamines modulate mouse sperm motility

, , ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 435-449 | Received 06 Feb 2023, Accepted 17 Sep 2023, Published online: 09 Oct 2023

References

  • Aitken RJ, Nixon B. 2013. Sperm capacitation: a distant landscape glimpsed but unexplored. Mol Hum Reprod. 19(12):785–793. doi:10.1093/molehr/gat067.
  • Balbach M, Ghanem L, Rossetti T, Kaur N, Ritagliati C, Ferreira J, Krapf D, Puga Molina LC, Santi CM, Hansen JN, et al. 2021. Soluble adenylyl cyclase inhibition prevents human sperm functions essential for fertilization. Mol Hum Reprod. 27(9):gaab054. doi:10.1093/molehr/gaab054.
  • Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE, Cuasnicú PS. 2013. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod. 19(9):570–580. doi:10.1093/molehr/gat033.
  • Buffone MG, Wertheimer EV, Visconti PE, Krapf D. 2014. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta. 1842(12 Pt B):2610–2620. doi:10.1016/j.bbadis.2014.07.013.
  • Casillas ER, Elder CM, Hoskins DD. 1980. Adenylate cyclase activity of bovine spermatozoa during maturation in the epididymis and the activation of sperm particulate adenylate cyclase by GTP and polyamines. J Reprod Fertil. 59(2):297–302. doi:10.1530/jrf.0.0590297.
  • Chakraborty S, Saha S. 2022. Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. Middle East Fertil Soc J. 27(1):4. doi:10.1186/s43043-022-00094-7.
  • Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. 2020. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep. 10(1):15619. doi:10.1038/s41598-020-72425-5.
  • Cordero-Martínez J, Flores-Alonso JC, Aguirre-Alvarado C, Oviedo N, Alcántara-Farfán V, García-Pérez CA, Bermúdez-Ruiz KF, Jiménez-Gutiérrez GE, Rodríguez-Páez L. 2020. Influence of Echeveria gibbiflora DC aqueous crude extract on mouse sperm energy metabolism and calcium-dependent channels. J Ethnopharmacol. 248:112321. doi:10.1016/j.jep.2019.112321.
  • Ded L, Sebkova N, Cerna M, Elzeinova F, Dostalova P, Peknicova J, Dvorakova-Hortova K. 2013. In vivo exposure to 17β-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction. 145(3):255–263. doi:10.1530/REP-12-0472.
  • Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. 2022. A review on the role of bicarbonate and proton transporters during sperm capacitation in mammals. Int J Mol Sci. 23(11):6333. doi:10.3390/ijms23116333
  • Dey S, Roy D, Majumder GC, Mukherjee B, Bhattacharyya D. 2015. Role of forward-motility-stimulating factor as an extracellular activator of soluble adenylyl cyclase. Mol Reprod Dev. 82(12):1001–1014. doi:10.1002/mrd.22586.
  • Escoffier J, Krapf D, Navarrete F, Darszon A, Visconti PE. 2012. Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. J Cell Sci. 125(Pt 2):473–485. doi:10.1242/jcs.093344.
  • Granados-Gonzalez G, Mendoza-Lujambio I, Rodriguez E, Galindo BE, Beltrán C, Darszon A. 2005. Identification of voltage-dependent Ca2+ channels in sea urchin sperm. FEBS Lett. 579(29):6667–6672. doi:10.1016/j.febslet.2005.10.035.
  • Harayama H. 2013. Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. J Reprod Dev. 59(5):421–430. doi:10.1262/jrd.2013-056.
  • Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, et al. 2005. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell. 9(2):249–259. doi:10.1016/j.devcel.2005.06.007.
  • Hidalgo DM, Romarowski A, Gervasi MG, Navarrete F, Balbach M, Salicioni AM, Levin LR, Buck J, Visconti PE. 2020. Capacitation increases glucose consumption in murine sperm. Molecular Reproduction Devel. 87(10):1037–1047. doi:10.1002/mrd.23421.
  • Jakobsen E, Lange SC, Andersen JV, Desler C, Kihl HF, Hohnholt MC, Stridh MH, Rasmussen LJ, Waagepetersen HS, Bak LK. 2018. The inhibitors of soluble adenylate cyclase 2-OHE, KH7, and bithionol compromise mitochondrial ATP production by distinct mechanisms. Biochem Pharmacol. 155:92–101. doi:10.1016/j.bcp.2018.06.023.
  • Jakobsen H, Rui H, Thomassen Y, Hald T, Purvis K. 1989. Polyamines and other accessory sex gland secretions in human seminal plasma 8 years after vasectomy. J Reprod Fertil. 87(1):39–45.
  • Jeffree GM. 1956. The maintenance of prostatic acid phosphatase activity by proteins and polyamines. Biochim Biophys Acta. 20(3):503–513.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873):583–589. doi:10.1038/s41586-021-03819-2.
  • Koo BH, Hong D, Hong HD, Lim HK, Hoe KL, Won MH, Kim YM, Berkowitz DE, Ryoo S. 2019. Arginase II activity regulates cytosolic Ca(2+) level in a p32-dependent manner that contributes to Ca(2+)-dependent vasoconstriction in native low-density lipoprotein-stimulated vascular smooth muscle cells. Exp Mol Med. 51(6):1–12.
  • Laskowski RA, Swindells MB. 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 51(10):2778–2786. doi:10.1021/ci200227u.
  • Lefèvre PL, Palin MF, Murphy BD. 2011. Polyamines on the reproductive landscape. Endocr Rev. 32(5):694–712. doi:10.1210/er.2011-0012.
  • Lenis YY, Elmetwally MA, Maldonado-Estrada JG, Bazer FW. 2017. Physiological importance of polyamines. Zygote. 25(3):244–255. doi:10.1017/S0967199417000120.
  • Li R, Wu X, Zhu Z, Lv Y, Zheng Y, Lu H, Zhou K, Wu D, Zeng W, Dong W, et al. 2022. Polyamines protect boar sperm from oxidative stress in vitro. J Anim Sci. 100(4)
  • Mann T, Lutwak-Mann C. 1981. Secretory function of the prostate, seminal vesicle, Cowper’s gland and other accessory organs of reproduction. In: Mann T, Lutwak-Mann C, editors. Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology. London: Springer London; p. 171–193.
  • Melendrez CS, Ruttle JL, Hallford DM, Chaudhry PS, Casillas ER. 1992. Polyamines in ejaculated ram spermatozoa and their relationship with sperm motility. J Androl. 13(4):293–296.
  • Michael AJ. 2016. Biosynthesis of polyamines and polyamine-containing molecules. Biochem J. 473(15):2315–2329. doi:10.1042/BCJ20160185.
  • Morales ME, Rico G, Bravo C, Tapia R, Alvarez C, Méndez JD. 2003. Progressive motility increase caused by L-arginine and polyamines in sperm from patients with idiopathic and diabetic asthenozoospermia. Ginecol Obstet Mex. 71:297–303.
  • Morgan DM. 1999. Polyamines. An overview. Mol Biotechnol. 11(3):229–250. doi:10.1007/BF02788682.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 30(16):2785–2791. doi:10.1002/jcc.21256.
  • Nowicka-Bauer K, Szymczak-Cendlak M. 2021. Structure and function of ion channels regulating sperm motility-an overview. Int J Mol Sci. 22(6):3259. doi:10.3390/ijms22063259
  • Pegg AE. 2016. Functions of polyamines in mammals. J Biol Chem. 291(29):14904–14912. doi:10.1074/jbc.R116.731661.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 25(13):1605–1612. doi:10.1002/jcc.20084.
  • Pietrobon EO, Domínguez LA, Vincenti AE, Burgos MH, Fornés MW. 2001. Detection of the mouse acrosome reaction by acid phosphatase. Comparison with chlortetracycline and electron microscopy. J Androl. 22(1):96–103.
  • Plant TM, Zeleznik A, Albertini DF, Goodman RL, Herbison A, McCarthy M, Muglia LJ, Richards JS. 2014. Knobil and Neill’s physiology of reproduction: two-volume set. Vol. 1; p. 1–2550.
  • Rodríguez-Páez L, Aguirre-Alvarado C, Oviedo N, Alcántara-Farfán V, Lara-Ramírez EE, Jimenez-Gutierrez GE, Cordero-Martínez J. 2021. Polyamines influence mouse sperm channels activity. Int J Mol Sci. 22(1)
  • Rubinstein S, Breitbart H. 1991. Role of spermine in mammalian sperm capacitation and acrosome reaction. Biochem J. 278(Pt 1):25–28. doi:10.1042/bj2780025.
  • Rubinstein S, Lax Y, Shalev Y, Breitbart H. 1995. Dual effect of spermine on acrosomal exocytosis in capacitated bovine spermatozoa. Biochim Biophys Acta. 1266(2):196–200. doi:10.1016/0167-4889(95)00007-f.
  • Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A, Salkoff L. 2010. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett. 584(5):1041–1046. doi:10.1016/j.febslet.2010.02.005.
  • Schlingmann K, Michaut MA, McElwee JL, Wolff CA, Travis AJ, Turner RM. 2007. Calmodulin and CaMKII in the sperm principal piece: evidence for a motility-related calcium/calmodulin pathway. J Androl. 28(5):706–716. doi:10.2164/jandrol.106.001669.
  • Shah GV, Sheth AR, Mugatwala PP, Rao SS. 1975. Effect of spermine on adenyl cyclase activity of spermatozoa. Experientia. 31(6):631–632. doi:10.1007/BF01944596.
  • Shi QX, Yuan YY, Friend DS, Marton LJ. 1992. Effect of spermine on sperm capacitation of guinea pig in vitro. Arch Androl. 29(1):33–42. doi:10.3109/01485019208987706.
  • Suarez SS, Pacey AA. 2006. Sperm transport in the female reproductive tract. Hum Reprod Update. 12(1):23–37. doi:10.1093/humupd/dmi047.
  • Suarez SS, Wolfner MF. 2017. Seminal plasma plays important roles in fertility. In: De Jonge CJ and Barratt CLR, editors. The sperm cell: production, maturation, fertilization, regeneration. Cambridge: Cambridge University Press; p. 88–108.
  • Swaminathan PD, Purohit A, Hund TJ, Anderson ME. 2012. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res. 110(12):1661–1677. doi:10.1161/CIRCRESAHA.111.243956.
  • Tabor CW, Rosenthal SM. 1956. Pharmacology of spermine and spermidine; some effects on animals and bacteria. J Pharmacol Exp Ther. 116(2):139–155.
  • Tabor H, Tabor CW. 1964. Spermidine, spermine, and related amines. Pharmacol Rev. 16:245–300.
  • Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31(2):455–461. doi:10.1002/jcc.21334.
  • Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L, 3rd, Byus CV, Gerner EW. 2008. Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem. 283(39):26428–26435. doi:10.1074/jbc.M804714200.
  • Wertheimer E, Krapf D, de la Vega-Beltran JL, Sánchez-Cárdenas C, Navarrete F, Haddad D, Escoffier J, Salicioni AM, Levin LR, Buck J, et al. 2013. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem. 288(49):35307–35320. doi:10.1074/jbc.M113.489476.
  • Williams K. 1997. Interactions of polyamines with ion channels. Biochem J. 325(Pt 2):289–297. doi:10.1042/bj3250289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.