3,764
Views
0
CrossRef citations to date
0
Altmetric
Review

Facilitating high throughput bispecific antibody production and potential applications within biopharmaceutical discovery workflows

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2311992 | Received 10 Oct 2023, Accepted 25 Jan 2024, Published online: 21 Feb 2024

References

  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–18. doi:10.1080/19420862.2016.1268307. PMID: 28071970.
  • Husain B, Ellerman D. Expanding the Boundaries of Biotherapeutics with Bispecific antibodies. BioDrugs. 2018;32(5):441–64. doi:10.1007/s40259-018-0299-9. PMID: 30132211.
  • Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. doi:10.1038/s41573-019-0028-1. PMID: 31175342.
  • Benschop RJ, Chow C-K, Tian Y, Nelson J, Barmettler B, Atwell S, Clawson D, Chai Q, Jones B, Fitchett J. et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs. 2019;11(6):1175–90. doi:10.1080/19420862.2019.1624463. PMID: 31181988.
  • Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs. 2012;4(6):653–63. doi:10.4161/mabs.21379. PMID: 22925968.
  • Li Z, Li S, Zhang G, Peng W, Chang Z, Zhang X, Fan Z, Chai Y, Wang F, Zhao X. et al. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat Immunol. 2022;23(3):423–30. doi:10.1038/s41590-022-01138-w. PMID: 35228696.
  • Sheridan C. Bispecific antibodies poised to deliver wave of cancer therapies. Nat Biotechnol. 2021;39(3):251–54. doi:10.1038/s41587-021-00850-6. PMID: 33692520.
  • Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15(1):2153410. doi:10.1080/19420862.2022.2153410. PMID: 36472472.
  • Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S. et al. Predicting antibody developability profiles through early stage discovery screening. MAbs. 2020;12(1):1743053. doi:10.1080/19420862.2020.1743053. PMID: 32249670.
  • Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Chen EC. et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med. 2020;26(9):1422–27. doi:10.1038/s41591-020-0998-x. PMID: 32651581.
  • Scott MJ, Jowett A, Orecchia M, Ertl P, Ouro-Gnao L, Ticehurst J, Gower D, Yates J, Poulton K, Harris C. et al. Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs. 2020;12(1):1755069. doi:10.1080/19420862.2020.1755069. PMID: 32343620.
  • Lim SA, Gramespacher JA, Pance K, Rettko NJ, Solomon P, Jin J, Lui I, Elledge SK, Liu J, Bracken CJ. et al. Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. MAbs. 2021;13(1):1893426. doi:10.1080/19420862.2021.1893426. PMID: 33666135.
  • De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, Percivalle E, Lorenzi JCC, Mazzola F, Magri D. et al. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature. 2021;593(7859):424–28. doi:10.1038/s41586-021-03461-y. PMID: 33767445.
  • Mazor Y, Sachsenmeier KF, Yang C, Hansen A, Filderman J, Mulgrew K, Wu H, Dall’acqua WF. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep. 2017;7(1):40098. doi:10.1038/srep40098. PMID: 28067257.
  • Dicara DM, Bhakta S, Go MA, Ziai J, Firestein R, Forrest B, Gu C, Leong SR, Lee G, Yu S-F. et al. Development of T-cell engagers selective for cells co-expressing two antigens. MAbs. 2022;14(1):2115213. doi:10.1080/19420862.2022.2115213. PMID: 36206404.
  • Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu ML, Pham A. et al. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. MAbs. 2021;13(1):1871171. doi:10.1080/19420862.2020.1871171. PMID: 33557687.
  • Kühl L, Schäfer AK, Kraft S, Aschmoneit N, Kontermann RE, Seifert O. eIg-based bispecific T-cell engagers targeting EGFR: format matters. MAbs. 2023;15(1):2183540. doi:10.1080/19420862.2023.2183540. PMID: 36864566.
  • Dickopf S, Georges GJ, Brinkmann U. Format and geometries matter: structure-based design defines the functionality of bispecific antibodies. Comput Struct Biotechnol J. 2020;18:1221–1227. doi:10.1016/j.csbj.2020.05.006. PMID: 32542108.
  • Surowka M, Schaefer W, Klein C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs. 2021;13(1):1967714. doi:10.1080/19420862.2021.1967714. PMID: 34491877.
  • Damato BE, Dukes J, Goodall H, Carvajal RD. Tebentafusp: T cell redirection for the Treatment of Metastatic Uveal Melanoma. Cancers. 2019;11(7):971. doi:10.3390/cancers11070971. PMID: 31336704.
  • Nolan-Stevaux O, Li C, Liang L, Zhan J, Estrada J, Osgood T, Li F, Zhang H, Case R, Murawsky CM. et al. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov. 2023;14(1):90–103. doi:10.1158/2159-8290.CD-23-0984. PMID: 37861452.
  • Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T. et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PloS ONE. 2013;8(2):e57479. doi:10.1371/journal.pone.0057479. PMID: 23468998.
  • Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and production of bispecific antibodies. Antibodies (Basel). 2019;8(3):43. doi:10.3390/antib8030043. PMID: 31544849.
  • Schaefer W, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A. 2011;108(27):11187–92. doi:10.1073/pnas.1019002108. PMID: 21690412.
  • Atwell S, Ridgway JBB, Wells JA, Carter P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol. 1997;270(1):26–35. doi:10.1006/jmbi.1997.1116. PMID: 9231898.
  • Balasubramanian S, Peery RB, Minshull J, Lee M, White R, Kelly RM, Barnard GC. Generation of high expressing Chinese hamster ovary cell pools using the leap-in transposon system. Biotechnol J. 2018;13(10):1700748. doi:10.1002/biot.201700748. PMID: 29797786.
  • Wang Y, Qiu H, Minshull J, Tam W, Hu X, Mieczkowski C, Zheng W, Chu C, Liu W, Boldog F. et al. An innovative platform to improve asymmetric bispecific antibody assembly, purity, and expression level in stable pool and cell line development. Biochem Eng J. 2022;188:108683. doi: 10.1016/j.bej.2022.108683.
  • Shatz W, Ng D, Dutina G, Wong AW, Dunshee DR, Sonoda J, Shen A, Scheer JM. An efficient route to bispecific antibody production using single-reactor mammalian co-culture. MAbs. 2016;8(8):1487–97. doi:10.1080/19420862.2016.1234569. PMID: 27680183.
  • Furtmann N, Schneider M, Spindler N, Steinmann B, Li Z, Focken I, Meyer J, Dimova D, Kroll K, Leuschner WD. et al. An end-to-end automated platform process for high-throughput engineering of next-generation multi-specific antibody therapeutics. MAbs. 2021;13(1):1955433. doi:10.1080/19420862.2021.1955433. PMID: 34382900.
  • Bracken CJ, Lim SA, Solomon P, Rettko NJ, Nguyen DP, Zha BS, Schaefer K, Byrnes JR, Zhou J, Lui I. et al. Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nat Chem Biol. 2021;17(1):113–21. doi:10.1038/s41589-020-00679-1. PMID: 33082574.
  • Bournazos S, Gazumyan A, Seaman MS, Nussenzweig MC, Ravetch JV. Bispecific anti-HIV-1 antibodies with enhanced breadth and Potency. Cell. 2016;165(7):1609–20. doi:10.1016/j.cell.2016.04.050. PMID: 27315478.
  • Leaver-Fay A, Froning Karen J, Atwell S, Aldaz H, Pustilnik A, Lu F, Huang F, Yuan R, Hassanali S, Chamberlain Aaron K. et al. Computationally Designed Bispecific Antibodies using Negative State Repertoires. Structure. 2016;24(4):641–51. doi:10.1016/j.str.2016.02.013. PMID: 26996964.
  • Coloma MJ, Morrison SL. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol. 1997;15(2):159–63. doi:10.1038/nbt0297-159. PMID: 9035142.
  • Gruber M, Schodin BA, Wilson ER, Kranz DM. Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J Immunol. 1994;152(11):5368–5374. doi:10.4049/jimmunol.152.11.5368. PMID: 8189055.
  • Els Conrath K, Lauwereys M, Wyns L, Muyldermans S. Camel Single-domain Antibodies as Modular Building Units in Bispecific and Bivalent Antibody Constructs. J Biol Chem. 2001;276:7346–50. doi:10.1074/jbc.M007734200. PMID: 11053416.
  • Bhatta P, Whale KD, Sawtell AK, Thompson CL, Rapecki SE, Cook DA, Twomey BM, Mennecozzi M, Starkie LE, Barry EMC. et al. Bispecific antibody target pair discovery by high-throughput phenotypic screening using in vitro combinatorial fab libraries. MAbs. 2021;13(1):1859049. doi:10.1080/19420862.2020.1859049. PMID: 33487120.
  • Hofmann T, Schmidt J, Ciesielski E, Becker S, Rysiok T, Schutte M, Toleikis L, Kolmar H, Doerner A. Intein mediated high throughput screening for bispecific antibodies. MAbs. 2020;12:1731938. doi:10.1080/19420862.2020.1731938. PMID: 32151188.
  • Khalili H, Godwin A, Choi J-W, Lever R, Khaw PT, Brocchini S. Fab-PEG-Fab as a potential antibody mimetic. Bioconjug Chem. 2013;24:1870–82. doi:10.1021/bc400246z. PMID: 24073593.
  • Kim S, Ko W, Sung BH, Kim SC, Lee HS. Direct protein–protein conjugation by genetically introducing bioorthogonal functional groups into proteins. Bioorg Med Chem. 2016;24:5816–22. doi:10.1016/j.bmc.2016.09.035. PMID: 27670101.
  • Labrijn AF, Meesters JI, de Goeij BE, van den Bremer ET, Neijssen J, van Kampen MD, Strumane K, Verploegen S, Kundu A, Gramer MJ. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci U S A. 2013;110(13):5145–50. doi:10.1073/pnas.1220145110. PMID: 23479652.
  • The Antibody Society: Therapeutic monoclonal antibodies approved or in review in the EU or US. [accessed 2024 Jan 5]. https://www.antibodysociety.org/antibody-therapeutics-product-data.
  • Sawant MS, Streu CN, Wu L, Tessier PM. Toward drug-like multispecific antibodies by design. Int J Mol Sci. 2020;21(20):7496. doi:10.3390/ijms21207496. PMID: 33053650.
  • Rossotti MA, Belanger K, Henry KA, Tanha J. Immunogenicity and humanization of single-domain antibodies. FEBS J. 2021;289(14):4304–27. doi:10.1111/febs.15809. PMID: 33751827.
  • Yanchen Z, Hweixian LP, Mark AK, Bianca B, Kelly H, Lynette SC, Jane P, Daniel TM. Immunogenicity assessment of bispecificantibody-based immunotherapy in oncology. J Immunother Cancer. 2022;10(4):e004225. doi:10.1136/jitc-2021-004225. PMID: 35444060.
  • Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies (Basel). 2020;9(4):64. doi:10.3390/antib9040064. PMID: 33212886.
  • Vijayaraghavan S, Lipfert L, Chevalier K, Bushey BS, Henley B, Lenhart R, Sendecki J, Beqiri M, Millar HJ, Packman K. et al. Amivantamab (JNJ-61186372), an Fc Enhanced EGFR/cMet Bispecific Antibody, induces receptor downmodulation and antitumor activity by Monocyte/Macrophage Trogocytosis. Mol Cancer Ther. 2020;19(10):2044–56. doi:10.1158/1535-7163.MCT-20-0071. PMID: 32747419.
  • Underwood DJ, Bettencourt J, Jawad Z. The manufacturing considerations of bispecific antibodies. Expert Opin Biol Ther. 2022;22:1043–65. doi:10.1080/14712598.2022.2095900. PMID: 35771976.
  • Dengl S, Mayer K, Bormann F, Duerr H, Hoffmann E, Nussbaum B, Tischler M, Wagner M, Kuglstatter A, Leibrock L. et al. Format chain exchange (FORCE) for high-throughput generation of bispecific antibodies in combinatorial binder-format matrices. Nat Commun. 2020;11(1):4974. doi:10.1038/s41467-020-18477-7. PMID: 33009381.
  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P. An efficient route to human bispecific IgG. Nat Biotechnol. 1998;16(7):677–81. doi:10.1038/nbt0798-677. PMID: 9661204.
  • Xu J, Wang Z, Li J. Wuxi Biologics (Shanghai) Co., Ltd and Wuxi Biologics Ireland Ltd. Novel bispecific polypeptide complexes. WO2019057122.
  • Gunasekaran K, Pentony M, Shen M, Garrett L, Forte C, Woodward A, Ng SB, Born T, Retter M, Manchulenko K. et al. Enhancing antibody fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem. 2010;285(25):19637–46. doi:10.1074/jbc.M110.117382. PMID: 20400508.
  • Igawa T, Tsunoda H. Chugai Seiyaku Kabushiki Kaisha. Methods for producing polypeptides by regulating polypeptide association. WO2006106905.
  • De Nardis C, Hendriks LJA, Poirier E, Arvinte T, Gros P, Bakker ABH, de Kruif J. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. J Biol Chem. 2017;292(35):14706–17. doi:10.1074/jbc.M117.793497. PMID: 28655766.
  • Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo K-M, Huston JS. Seedbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies†. Protein Eng Des Sel. 2010;23(4):195–202. doi:10.1093/protein/gzp094. PMID: 20299542.
  • Moore GL, Bautista C, Pong E, Nguyen D-H, Jacinto J, Eivazi A, Muchhal US, Karki S, Chu SY, Lazar GA. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. MAbs. 2011;3(6):546–57. doi:10.4161/mabs.3.6.18123. PMID: 22123055.
  • Spreter Von Kreudenstein T, Lario PI, Dixit SB. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric fc engineering. Methods. 2014;65(1):77–94. doi:10.1016/j.ymeth.2013.10.016. PMID: 24211748.
  • Estes B, Sudom A, Gong D, Whittington DA, Li V, Mohr C, Li D, Riley TP, Shi SDH, Zhang J. et al. Next generation fc scaffold for multispecific antibodies. iScience. 2021;24(12):103447. doi:10.1016/j.isci.2021.103447. PMID: 34877503.
  • Li Y, Wang Y, Shen P, Zhou W. Chapter 8 - A roadmap for IgG-like bispecific antibody purification. In: Matte A, editor. Approaches To The Purification, Analysis And Characterization Of Antibody-Based Therapeutics. Elsevier; 2020. p. 167–79 doi:10.1016/B978-0-08-103019-6.00008-4.
  • Tustian AD, Endicott C, Adams B, Mattila J, Bak H. Development of purification processes for fully human bispecific antibodies based upon modification of protein a binding avidity. MAbs. 2016;8(4):828–38. doi:10.1080/19420862.2016.1160192. PMID: 26963837.
  • Van Blarcom T, Lindquist K, Melton Z, Cheung WL, Wagstrom C, McDonough D, Valle Oseguera C, Ding S, Rossi A, Potluri S. et al. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. MAbs. 2018;10(2):256–68. doi:10.1080/19420862.2017.1406570. PMID: 29227213.
  • Li Y. IgG-like bispecific antibody platforms with built-in purification-facilitating elements. Protein Expr Purif. 2021;188:105955. doi:10.1016/j.pep.2021.105955. PMID: 34416361.
  • Yang X, Yuan R, Garcia C, Berry J, Foster D, He D, Zhang G-F, Jones BE. Development of a robust and semi-automated two-step antibody purification process. MAbs. 2021;13(1):2000348. doi:10.1080/19420862.2021.2000348. PMID: 34781834.
  • Ransdell AS, Reed M, Herrington J, Cain P, Kelly RM. Creation of a versatile automated two-step purification system with increased throughput capacity for preclinical mAb material generation. Protein Expr Purif. 2023;207:106269. doi:10.1016/j.pep.2023.106269. PMID: 37023994.
  • Geuijen CAW, De Nardis C, Maussang D, Rovers E, Gallenne T, Hendriks LJA, Visser T, Nijhuis R, Logtenberg T, de Kruif J. et al. Unbiased combinatorial screening identifies a bispecific IgG1 that potently inhibits HER3 signaling via HER2-guided ligand blockade. Cancer Cell. 2018;33(5):922–36.e910. doi:10.1016/j.ccell.2018.04.003. PMID: 29763625.
  • Jackman J, Chen Y, Huang A, Moffat B, Scheer JM, Leong SR, Lee WP, Zhang J, Sharma N, Lu Y. et al. Development of a two-part strategy to identify a Therapeutic Human Bispecific Antibody that inhibits IgE receptor signaling. J Biol Chem. 2010;285:20850–59. doi:10.1074/jbc.M110.113910. PMID: 20444694.
  • Sharkey B, Pudi S, Wallace Moyer I, Zhong L, Prinz B, Baruah H, Lynaugh H, Kumar S, Wittrup KD, Nett JH. Purification of common light chain IgG-like bispecific antibodies using highly linear pH gradients. MAbs. 2017;9(2):257–68. doi:10.1080/19420862.2016.1267090. PMID: 27937066.
  • Harris KE, Aldred SF, Davison LM, Ogana HAN, Boudreau A, Brüggemann M, Osborn M, Ma B, Buelow B, Clarke SC. et al. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.00889. PMID: 29740455.
  • Ching KH, Berg K, Reynolds K, Pedersen D, Macias A, Abdiche YN, Harriman WD, Leighton PA. Common light chain chickens produce human antibodies of high affinity and broad epitope coverage for the engineering of bispecifics. MAbs. 2021;13(1):1862451. doi:10.1080/19420862.2020.1862451. PMID: 33491549.
  • Guo G, Han J, Wang Y, Li Y. A potential downstream platform approach for WuXiBody-based IgG-like bispecific antibodies. Protein Expr Purif. 2020;173:105647. doi:10.1016/j.pep.2020.105647. PMID: 32334139.
  • Mazor Y, Oganesyan V, Yang C, Hansen A, Wang J, Liu H, Sachsenmeier K, Carlson M, Gadre DV, Borrok MJ. et al. Improving target cell specificity using a novel monovalent bispecific IgG design. MAbs. 2015;7(2):377–89. doi:10.1080/19420862.2015.1007816. PMID: 25621507.
  • Bönisch M, Sellmann C, Maresch D, Halbig C, Becker S, Toleikis L, Hock B, Rüker F. Novel CH1: CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng Des Sel. 2017;30(9):685–96. doi:10.1093/protein/gzx044. PMID: 28981885.
  • Lewis SM, Wu X, Pustilnik A, Sereno A, Huang F, Rick HL, Guntas G, Leaver-Fay A, Smith EM, Ho C. et al. Generation of bispecific IgG antibodies by structure-based design of anorthogonal fab interface. Nat Biotechnol. 2014;32(2):191–98. doi:10.1038/nbt.2797. PMID: 24463572.
  • Liu Z, Leng EC, Gunasekaran K, Pentony M, Shen M, Howard M, Stoops J, Manchulenko K, Razinkov V, Liu H. et al. A novel antibody engineering strategy for Making Monovalent Bispecific Heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015;290(12):7535–62. doi:10.1074/jbc.M114.620260. PMID: 25583986.
  • Corper AL, Urosev D, Tom-Yew SAL, Bleile DWB, Spreter Von Kreudenstein T, Dixit S, Lario PI. Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof. WO2014082179.
  • Hutchings M, Morschhauser F, Iacoboni G, Carlo-Stella C, Offner FC, Sureda A, Salles G, Martínez-Lopez J, Crump M, Thomas DN. et al. Glofitamab, a novel, bivalent CD20-targeting T-Cell–engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-Cell lymphoma: a phase I trial. J Clin Oncol. 2021;39(18):1959–70. doi:10.1200/JCO.20.03175. PMID: 33739857.
  • Mallender WD, Voss EW. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem. 1994;269(1):199–206. doi:10.1016/S0021-9258(17)42334-9. PMID: 8276795.
  • Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth C-W, Matys ER, Little M. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol. 1999;293:41–56. doi:10.1006/jmbi.1999.3156. PMID: 10512714.
  • Holliger P, Prospero T, Winter G. ”Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA. 1993;90(14):6444–6448. doi:10.1073/pnas.90.14.6444. PMID: 8341653.
  • Alt M, Müller R, Kontermann RE. Novel tetravalent and bispecific IgG-like antibody molecules combining single-chain diabodies with the immunoglobulin γ1 fc or CH3 region. FEBS Lett. 1999;454:90–94. doi:10.1016/S0014-5793(99)00782-6. PMID: 10413102.
  • Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in producing antibody recombinant fragments. Int J Mol Sci. 2020;21(17):6324. doi:10.3390/ijms21176324. PMID: 32878291.
  • Scott MJ, Lee JA, Wake MS, Batt KV, Wattam TA, Hiles ID, Batuwangala TD, Ashman CI, Steward M. ‘In-format’ screening of a novel bispecific antibody format reveals significant potency improvements relative to unformatted molecules. MAbs. 2017;9(1):85–93. doi:10.1080/19420862.2016.1249078. PMID: 27786601.
  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu R-R, Santora L. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol. 2007;25(11):1290–97. doi:10.1038/nbt1345. PMID: 17934452.
  • Everett KL, Kraman M, Wollerton FPG, Zimarino C, Kmiecik K, Gaspar M, Pechouckova S, Allen NL, Doody JF, Tuna M. Generation of Fcabs targeting human and murine LAG-3 as building blocks for novel bispecific antibody therapeutics. Methods. 2019;154:60–69. doi:10.1016/j.ymeth.2018.09.003. PMID: 30208333.
  • Ramasubramanian A, Tennyson R, Magnay M, Kathuria S, Travaline T, Jain A, Lord DM, Salemi M, Sullivan C, Magnay T. et al. Bringing the heavy chain to light: creating a symmetric, bivalent IgG-like bispecific. Antibodies (Basel). 2020;9(4):62. doi:10.3390/antib9040062. PMID: 33172091.
  • Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJ, Bezabeh BZ, Fleming RL, Dimasi N. et al. A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces tumor Regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29(1):117–29. doi:10.1016/j.ccell.2015.12.008. PMID: 26766593.
  • Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, Hollebecque A, Le Tourneau C, Subbiah V, Tsai F, Kao S. et al. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J Immunother Cancer. 2021;9(2):e002015. doi:10.1136/jitc-2020-002015. PMID: 33608377.
  • Li Y, Hickson JA, Ambrosi DJ, Haasch DL, Foster-Duke KD, Eaton LJ, DiGiammarino EL, Panchal SC, Jiang F, Mudd SR. et al. ABT-165, a Dual Variable Domain Immunoglobulin (DVD-Ig) Targeting DLL4 and VEGF, Demonstrates Superior Efficacy and Favorable Safety Profiles in Preclinical Models. Mol Cancer Ther. 2018;17(5):1039–50. doi:10.1158/1535-7163.MCT-17-0800. PMID: 29592882.
  • Yeom D-H, Lee Y-S, Ryu I, Lee S, Sung B, Lee H-B, Kim D, Ahn J-H, Ha E, Choi Y-S. et al. ABL001, a bispecific antibody targeting VEGF and DLL4, with chemotherapy, synergistically inhibits tumor progression in xenograft models. Int J Mol Sci. 2021;22(1):241. doi:10.3390/ijms22010241. PMID: 33383646.
  • Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM, Chang C-H. Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci U S A. 2006;103:6841–46. doi:10.1073/pnas.0600982103. PMID: 16636283.
  • Rossi EA, Chang CH, Cardillo TM, Goldenberg DM. Optimization of multivalent bispecific antibodies and immunocytokines with improved in vivo properties. Bioconjug Chem. 2013;24(1):63–71. doi:10.1021/bc300488f. PMID: 23116517.
  • Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest hits—innovative technologies for high throughput identification of bispecific antibodies. Int J Mol Sci. 2020;21(18):6551. doi:10.3390/ijms21186551. PMID: 32911608.
  • Sutherland AR, Alam MK, Geyer CR. Post-translational assembly of protein parts into complex devices by using SpyTag/SpyCatcher protein Ligase. Chembiochem. 2019;20(3):319–28. doi:10.1002/cbic.201800538. PMID: 30358052.
  • Keeble AH, Turkki P, Stokes S, Khairil Anuar INA, Rahikainen R, Hytönen VP, Howarth M. Approaching infinite affinity through engineering of peptide–protein interaction. Proc Natl Acad Sci U S A. 2019;116:26523–33. doi:10.1073/pnas.1909653116. PMID: 31822621.
  • Andres F, Schwill M, Boersma YL, Pluckthun A. High-throughput generation of bispecific binding proteins by Sortase A–mediated coupling for direct functional screening in Cell Culture. Mol Cancer Ther. 2020;19(4):1080–88. doi:10.1158/1535-7163.MCT-19-0633. PMID: 31871271.
  • Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys. 1961;93:460–62. doi:10.1016/0003-9861(61)90296-X. PMID: 13729244.
  • Maruani A, Szijj PA, Bahou C, Nogueira JCF, Caddick S, Baker JR, Chudasama V. A plug-and-play approach for the De novo generation of dually functionalized bispecifics. Bioconjug Chem. 2020;31(3):520–29. doi:10.1021/acs.bioconjchem.0c00002. PMID: 32093465.
  • Patke S, Li J, Wang P, Slaga D, Johnston J, Bhakta S, Panowski S, Sun LL, Junttila T, Scheer JM. et al. bisFabs: tools for rapidly screening hybridoma IgGs for their activities as bispecific antibodies. MAbs. 2017;9(3):430–37. doi:10.1080/19420862.2017.1281504. PMID: 28125314.
  • Brennan M, Davison PF, Paulus H. Preparation of Bispecific Antibodies by Chemical Recombination of Monoclonal Immunoglobulin G1 Fragments. Sci. 1985;229(4708):81–83. doi:10.1126/science.3925553. PMID: 3925553.
  • Hull EA, Livanos M, Miranda E, Smith MEB, Chester KA, Baker JR. Homogeneous bispecifics by disulfide bridging. Bioconjug Chem. 2014;25(8):1395–401. doi:10.1021/bc5002467. PMID: 25033024.
  • Forte N, Livanos M, Miranda E, Morais M, Yang X, Rajkumar VS, Chester KA, Chudasama V, Baker JR. Tuning the hydrolytic stability of next generation maleimide cross-linkers enables access to albumin-antibody fragment conjugates and tri-scFvs. Bioconjug Chem. 2018;29(2):486–92. doi:10.1021/acs.bioconjchem.7b00795. PMID: 29384367.
  • James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S, Curnow RT. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 × CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer. 2001;85(2):152–56. doi:10.1054/bjoc.2001.1878. PMID: 11461069.
  • Szijj P, Chudasama V. The renaissance of chemically generated bispecific antibodies. Nat Rev Chem. 2021;5(2):78–92. doi:10.1038/s41570-020-00241-6. PMID: 37117612.
  • Dimasi N, Kumar A, Gao C. Generation of bispecific antibodies using chemical conjugation methods. Drug Discov Today Technol. 2021;40:13–24. doi:10.1016/j.ddtec.2021.08.006. PMID: 34916015.
  • Bhakta S, Raab H, Junutula JR. Engineering THIOMABs for site-specific conjugation of thiol-reactive linkers. Antibody-Drug Conjugates. Humana Press; 2013. pp. 189–203. doi:10.1007/978-1-62703-541-5_11.
  • Szijj PA, Bahou C, Chudasama VM. Minireview: addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov Today Technol. 2018;30:27–34. doi:10.1016/j.ddtec.2018.07.002. PMID: 30553517.
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40:2004–21. doi:10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5. PMID: 11433435.
  • Luo H, Hernandez R, Hong H, Graves SA, Yang Y, England CG, Theuer CP, Nickles RJ, Cai W. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proc Natl Acad Sci U S A. 2015;112:12806–11. doi:10.1073/pnas.1509667112. PMID: 26417085.
  • Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] Azide−Alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–47. doi:10.1021/ja044996f. PMID: 15547999.
  • Knall A-C, Slugovc C. Inverse electron demand diels–alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem Soc Rev. 2013;42(12):5131–42. doi:10.1039/C3CS60049A. PMID: 23563107.
  • Patterson JT, Isaacson J, Kerwin L, Atassi G, Duggal R, Bresson D, Zhu T, Zhou H, Fu Y, Kaufmann GF. PSMA-targeted bispecific Fab conjugates that engage T cells. Bioorg Med Chem Lett. 2017;27:5490–95. doi:10.1016/j.bmcl.2017.09.065. PMID: 29126850.
  • Kujawski M, Li L, Bhattacharya S, Wong P, Lee W-H, Williams L, Li H, Chea J, Poku K, Bowles N. et al. Generation of dual specific bivalent BiTEs (dbBispecific T-cell engaging antibodies) for cellular immunotherapy. BMC Cancer. 2019;19:882. doi:10.1186/s12885-019-6056-8. PMID: 31488104.
  • Ueda A, Umetsu M, Nakanishi T, Hashikami K, Nakazawa H, Hattori S, Asano R, Kumagai I. Chemically crosslinked bispecific antibodies for cancer therapy: breaking from the structural restrictions of the genetic fusion approach. Int J Mol Sci. 2020;21:711. doi:10.3390/ijms21030711. PMID: 31973200.
  • Hong Y, Nam S-M, Moon A. Antibody–drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res. 2023;46:131–48. doi:10.1007/s12272-023-01433-6. PMID: 36877356.
  • Schuurman J, Van Ree R, Perdok GJ, Van Doorn HR, Tan KY, Aalberse RC. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology. 1999;97(4):693–98. doi:10.1046/j.1365-2567.1999.00845.x. PMID: 10457225.
  • van der Zee JS, van Swieten P, Aalberse RC. Serologic aspects of IgG4 antibodies. II. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency. J Immunol. 1986;137(11):3566–71. doi:10.4049/jimmunol.137.11.3566. PMID: 3782791.
  • Aalberse RC, Schuurman J. IgG4 breaking the rules. Immunology. 2002;105(1):9–19. doi:10.1046/j.0019-2805.2001.01341.x. PMID: 11849310.
  • van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic fab arm exchange. Sci. 2007;317(5844):1554–57. doi:10.1126/science.1144603. PMID: 17872445.
  • Labrijn AF, Meesters JI, Priem P, de Jong RN, van den Bremer ETJ, van Kampen MD, Gerritsen AF, Schuurman J, Parren PWHI. Controlled Fab-arm exchange for the generation of stable bispecific IgG1. Nat Protoc. 2014;9(10):2450–63. doi:10.1038/nprot.2014.169. PMID: 25255089.
  • Strop P, Ho WH, Boustany LM, Abdiche YN, Lindquist KC, Farias SE, Rickert M, Appah CT, Pascua E, Radcliffe T. et al. Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J Mol Biol. 2012;420(3):204–19. doi:10.1016/j.jmb.2012.04.020. PMID: 22543237.
  • Spiess C, Merchant M, Huang A, Zheng Z, Yang NY, Peng J, Ellerman D, Shatz W, Reilly D, Yansura DG. et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol. 2013;31(8):753–58. doi:10.1038/nbt.2621. PMID: 23831709.
  • van den Bremer ETJ, Labrijn AF, van den Boogaard R, Priem P, Scheffler K, Melis JPM, Schuurman J, Parren PWHI, de Jong RN. Cysteine-SILAC Mass spectrometry enabling the identification and quantitation of scrambled interchain disulfide bonds: preservation of native heavy-light chain pairing in Bispecific IgGs Generated by Controlled Fab-arm Exchange. Anal Chem. 2017;89(20):10873–82. doi:10.1021/acs.analchem.7b02543. PMID: 28922593.
  • Gramer MJ, van den Bremer ETJ, van Kampen MD, Kundu A, Kopfmann P, Etter E, Stinehelfer D, Long J, Lannom T, Noordergraaf EH. et al. Production of stable bispecific IgG1 by controlled Fab-arm exchange. MAbs. 2013;5(6):962–73. doi:10.4161/mabs.26233. PMID: 23995617.
  • Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PWHI, Strohl WR. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 2021;296:100641. doi:10.1016/j.jbc.2021.100641. PMID: 100641.
  • Rashid MH. Full-length recombinant antibodies from Escherichia coli: production, characterization, effector function (fc) engineering, and clinical evaluation. MAbs. 2022;14(1):2111748. doi:10.1080/19420862.2022.2111748. PMID: 36018829.
  • Steinhardt J, Wu Y, Fleming R, Ruddle BT, Patel P, Wu H, Gao C, Dimasi N. Fab-arm exchange combined with selective protein a purification results in a platform for rapid preparation of monovalent bispecific antibodies directly from culture media. Pharmaceutics. 2019;12(1):3. doi:10.3390/pharmaceutics12010003. PMID: 31861347.
  • The US Department of Health and Human Services Food and Drug Administration. Bispecific Antibody Development Programs: guidance for industry. Maryland (MD): Office of Communications, Division of Drug Information, Center for Drug Evaluation and Research, Food and Drug Administration. https://www.fda.gov/media/123313/download [accessed 24/09/2023].
  • Wörn A, Plückthun A. Stability engineering of antibody single-chain fv fragments. J Mol Biol. 2001;305(5):989–1010. doi:10.1006/jmbi.2000.4265. PMID: 11162109.
  • Giese G, Williams A, Rodriguez M, Persson J. Bispecific antibody process development: assembly and purification of knob and hole bispecific antibodies. Biotechnol Prog. 2018;34(2):397–404. doi:10.1002/btpr.2590. PMID: 29193902.
  • Woods RJ, Xie MH, Von Kreudenstein TS, Ng GY, Dixit SB. LC-MS characterization and purity assessment of a prototype bispecific antibody. MAbs. 2013;5(5):711–22. doi:10.4161/mabs.25488. PMID: 23884083.
  • Phung W, Han G, Polderdijk SGI, Dillon M, Shatz W, Liu P, Wei B, Suresh P, Fischer D, Spiess C. et al. Characterization of bispecific and mispaired IgGs by native charge-variant mass spectrometry. Int J Mass Spectrom. 2019;446:116229. doi: 10.1016/j.ijms.2019.116229.
  • Yin Y, Han G, Zhou J, Dillon M, McCarty L, Gavino L, Ellerman D, Spiess C, Sandoval W, Carter PJ. Precise quantification of mixtures of bispecific IgG produced in single host cells by liquid chromatography-Orbitrap high-resolution mass spectrometry. MAbs. 2016;8(8):1467–76. doi:10.1080/19420862.2016.1232217. PMID: 27610742.
  • Schachner L, Han G, Dillon M, Zhou J, McCarty L, Ellerman D, Yin Y, Spiess C, Lill JR, Carter PJ. et al. Characterization of chain pairing variants of bispecific IgG expressed in a single Host cell by high-resolution native and denaturing Mass spectrometry. Anal Chem. 2016;88(24):12122–27. doi:10.1021/acs.analchem.6b02866. PMID: 28193052.
  • Cao M, Parthemore C, Jiao Y, Korman S, Aspelund M, Hunter A, Kilby G, Chen X. Characterization and monitoring of a novel light-heavy-light chain mispair in a Therapeutic Bispecific Antibody. J Pharm Sci. 2021;110:2904–15. doi:10.1016/j.xphs.2021.04.010. PMID: 33894207.
  • Zhang T, Wan Y, Duan J, Li Y. Removing a light-chain missing byproduct by MMC ImpRes mixed-mode chromatography under weak partitioning mode in purifying a WuXiBody-based bispecific antibody. Protein Expr Purif. 2021;186:105927. doi:10.1016/j.pep.2021.105927. PMID: 34111551.
  • Wang C, Vemulapalli B, Cao M, Gadre D, Wang J, Hunter A, Wang X, Liu D. A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture. MAbs. 2018;10(8):1226–35. doi:10.1080/19420862.2018.1511198. PMID: 30153083.
  • Chen T, Han J, Guo G, Wang Q, Wang Y, Li Y. Monitoring removal of hole-hole homodimer by analytical hydrophobic interaction chromatography in purifying a bispecific antibody. Protein Expr Purif. 2019;164:105457. doi:10.1016/j.pep.2019.105457. PMID: 31344474.
  • Chen B, Lin Z, Alpert AJ, Fu C, Zhang Q, Pritts WA, Ge Y. Online hydrophobic interaction chromatography–Mass spectrometry for the analysis of intact monoclonal antibodies. Anal Chem. 2018;90(12):7135–38. doi:10.1021/acs.analchem.8b01865. PMID: 29846060.
  • Rispens T, den Bleker TH, Aalberse RC. Hybrid IgG4/IgG4 fc antibodies form upon ‘fab-arm’ exchange as demonstrated by SDS-PAGE or size-exclusion chromatography. Mol Immunol. 2010;47(7–8):1592–94. doi:10.1016/j.molimm.2010.02.021. PMID: 20299101.
  • Haberger M, Leiss M, Heidenreich A-K, Pester O, Hafenmair G, Hook M, Bonnington L, Wegele H, Haindl M, Reusch D. et al. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs. 2016;8(2):331–39. doi:10.1080/19420862.2015.1122150. PMID: 26655595.
  • Cramer DAT, Franc V, Heidenreich A-K, Hook M, Adibzadeh M, Reusch D, Heck AJR, Haberger M. Characterization of high-molecular weight by-products in the production of a trivalent bispecific 2+1 heterodimeric antibody. MAbs. 2023;15(1):2175312. doi:10.1080/19420862.2023.2175312. PMID: 36799476.
  • Jiang H, Xu W, Liu R, Gupta B, Kilgore B, Du Z, Yang X. Characterization of bispecific antibody production in cell cultures by unique mixed mode size exclusion chromatography. Anal Chem. 2020;92(13):9312–21. doi:10.1021/acs.analchem.0c01641. PMID: 32497423.
  • Yang X, Zhang Y, Wang F, Wang L, Richardson D, Shameem M, Ambrogelly A. Analysis and purification of IgG4 bispecific antibodies by a mixed-mode chromatography. Anal Biochem. 2015;484:173–179. doi:10.1016/j.ab.2015.06.014. PMID: 26091837.
  • Yan Y, Xing T, Wang S, Daly TJ, Li N. Coupling Mixed-Mode Size Exclusion Chromatography with native Mass spectrometry for sensitive detection and quantitation of homodimer impurities in bispecific IgG. Anal Chem. 2019;91(17):11417–24. doi:10.1021/acs.analchem.9b02793. PMID: 31373790.
  • Tamara S, den Boer MA, Heck AJR. High-resolution native Mass spectrometry. Chem Rev. 2022;122(8):7269–326. doi:10.1021/acs.chemrev.1c00212. PMID: 34415162.
  • Terral G, Beck A, Cianférani S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1032:79–90. doi:10.1016/j.jchromb.2016.03.044. PMID: 27108304.
  • Macchi FD, Yang F, Li C, Wang C, Dang AN, Marhoul JC, Zhang H-M, Tully T, Liu H, Yu XC. et al. Absolute quantitation of intact recombinant antibody product variants using Mass spectrometry. Anal Chem. 2015;87(20):10475–82. doi:10.1021/acs.analchem.5b02627. PMID: 26376221.
  • Joshi KK, Phung W, Han G, Yin Y, Kim I, Sandoval W, Carter PJ. Elucidating heavy/light chain pairing preferences to facilitate the assembly of bispecific IgG in single cells. MAbs. 2019;11(7):1254–65. doi:10.1080/19420862.2019.1640549. PMID: 31286843.
  • Sawyer WS, Srikumar N, Carver J, Chu PY, Shen A, Xu A, Williams AJ, Spiess C, Wu C, Liu Y. et al. High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry. Proc Natl Acad Sci U S A. 2020;117(18):9851–56. doi:10.1073/pnas.1917383117. PMID: 32327606.
  • Wang S, Liu AP, Yan Y, Daly TJ, Li N. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry. J Pharm Biomed Anal. 2018;154:468–75. doi:10.1016/j.jpba.2018.03.034. PMID: 29587227.
  • Waldenmaier HE, Gorre E, Poltash ML, Gunawardena HP, Zhai XA, Li J, Zhai B, Beil EJ, Terzo JC, Lawler R. et al. “Lab of the Future”─Today: fully automated system for high-throughput Mass spectrometry analysis of biotherapeutics. J Am Soc Mass Spectrom. 2023;34(6):1073–85. doi:10.1021/jasms.3c00036. PMID: 37186948.
  • Campuzano IDG, Pelegri-O’Day EM, Srinivasan N, Lippens JL, Egea P, Umeda A, Aral J, Zhang T, Laganowsky A, Netirojjanakul C. High-throughput Mass spectrometry for biopharma: a universal modality and target Independent analytical method for accurate biomolecule characterization. J Am Soc Mass Spectrom. 2022;33(11):2191–98. doi:10.1021/jasms.2c00138. PMID: 36206542.
  • Pu F, Ugrin SA, Radosevich AJ, Chang-Yen D, Sawicki JW, Talaty NN, Elsen NL, Williams JD. High-throughput intact protein analysis for drug discovery using infrared matrix-assisted laser desorption electrospray ionization Mass spectrometry. Anal Chem. 2022;94(39):13566–74. doi:10.1021/acs.analchem.2c03211. PMID: 36129783.
  • Zacharias AO, Liu C, VanAernum ZL, Covey TR, Bateman KP, Wen X, McLaren DG. Ultrahigh-Throughput Intact Protein Analysis with acoustic ejection Mass spectrometry. J Am Soc Mass Spectrom. 2023;34(1):4–9. doi:10.1021/jasms.2c00276. PMID: 36468949.
  • Segaliny AI, Jayaraman J, Chen X, Chong J, Luxon R, Fung A, Fu Q, Jiang X, Rivera R, Ma X. et al. A high throughput bispecific antibody discovery pipeline. Commun Biol. 2023;6(1):380. doi:10.1038/s42003-023-04746-w. PMID: 37029216.
  • Bai G, Sun C, Guo Z, Wang Y, Zeng X, Su Y, Zhao Q, Ma B. Accelerating antibody discovery and design with artificial intelligence: recent advances and prospects. Semin Cancer Biol. 2023;95:13–24. doi:10.1016/j.semcancer.2023.06.005. PMID: 37355214.
  • Svilenov HL, Arosio P, Menzen T, Tessier P, Sormanni P. Approaches to expand the conventional toolbox for discovery and selection of antibodies with drug-like physicochemical properties. MAbs. 2023;15(1):2164459. doi:10.1080/19420862.2022.2164459. PMID: 36629855.
  • Nimrod G, Fischman S, Austin M, Herman A, Keyes F, Leiderman O, Hargreaves D, Strajbl M, Breed J, Klompus S. et al. Computational Design of Epitope-Specific Functional Antibodies. Cell Rep. 2018;25(8):2121–31.e5. doi:10.1016/j.celrep.2018.10.081. PMID: 30463010.