2,914
Views
0
CrossRef citations to date
0
Altmetric
Report

Impact of antibody architecture and paratope valency on effector functions of bispecific NKp30 x EGFR natural killer cell engagers

, , , , , , , , , , , , , , ORCID Icon & show all
Article: 2315640 | Received 09 Jun 2023, Accepted 02 Feb 2024, Published online: 19 Feb 2024

References

  • Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–17. PMID: 32934330. doi: 10.1038/s41571-020-0426-7.
  • Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–88. PMID: 30209347. doi: 10.1038/s41577-018-0061-z.
  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–49. PMID: 21212348. doi: 10.1126/science.1198687.
  • Moretta L, Bottino C, Cantoni C, Mingari MC, Moretta A. Human natural killer cell function and receptors. Curr Opin Pharmacol. 2001;1(4):387–91. PMID: 11710737. doi: 10.1016/s1471-4892(01)00067-4.
  • Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. Human NK cells, their receptors and function. Eur J Immunol. 2021;51(7):1566–79. PMID: 33899224. doi: 10.1002/eji.202049028.
  • Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol. 2019;10:909. PMID: 31134055. doi:10.3389/fimmu.2019.00909.
  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10. PMID: 18425107. doi: 10.1038/ni1582.
  • Minetto P, Guolo F, Pesce S, Greppi M, Obino V, Ferretti E, Sivori S, Genova C, Lemoli RM, Marcenaro E. Harnessing NK cells for cancer treatment. Front Immunol. 2019;10:2836. PMID: 31867006. doi:10.3389/fimmu.2019.02836.
  • Bibeau F, Lopez-Crapez E, Di Fiore F, Thezenas S, Ychou M, Blanchard F, Lamy A, Penault-Llorca F, Frebourg T, Michel P. et al. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol. 2009;27(7):1122–29. PMID: 19164213. doi:10.1200/JCO.2008.18.0463
  • Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013;4:76. PMID: 23543707. doi:10.3389/fimmu.2013.00076.
  • Wang DS, Wei XL, Wang ZQ, Lu YX, Shi SM, Wang N, Qiu MZ, Wang FH, Wang RJ, Li YH. et al. FcγRIIA and IIIA polymorphisms predict clinical outcome of trastuzumab-treated metastatic gastric cancer. Onco Targets Ther. 2017;10:5065–76. PMID: 29089776. doi:10.2147/OTT.S142620.
  • Darwich A, Silvestri A, Benmebarek MR, Mouries J, Cadilha B, Melacarne A, Morelli L, Supino D, Taleb A, Obeck H. et al. Paralysis of the cytotoxic granule machinery is a new cancer immune evasion mechanism mediated by chitinase 3-like-1. J Immunother Cancer. 2021;9(11):e003224. PMID: 34824159. doi:10.1136/jitc-2021-003224
  • Beano A, Signorino E, Evangelista A, Brusa D, Mistrangelo M, Polimeni MA, Spadi R, Donadio M, Ciuffreda L, Matera L. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. J Transl Med. 2008;6(1):25. PMID: 18485193. doi: 10.1186/1479-5876-6-25.
  • Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Verneris M, Walcheck B. et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 2013;121(18):3599–608. doi:10.1182/blood-2012-04-425397.
  • Coënon L, Villalba M. From CD16a biology to antibody-dependent cell-mediated cytotoxicity improvement. Front Immunol. 2022;13:13. doi:10.3389/fimmu.2022.913215.
  • Cecchetti S, Spadaro F, Lugini L, Podo F, Ramoni C. Functional role of phosphatidylcholine-specific phospholipase C in regulating CD16 membrane expression in natural killer cells. Eur J Immunol. 2007;37(10):2912–22. PMID: 17899539. doi: 10.1002/eji.200737266.
  • Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS, Silva AJD. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006;43(8):1183–93. PMID: 16102830. doi: 10.1016/j.molimm.2005.07.010.
  • Klausz K, Pekar L, Boje AS, Gehlert CL, Krohn S, Gupta T, Xiao Y, Krah S, Zaynagetdinov R, Lipinski B. et al. Multifunctional NK cell–engaging antibodies targeting EGFR and NKp30 elicit efficient tumor cell killing and proinflammatory cytokine release. J Immunol. 2022;209(9):1724–35. PMID: 36104113. doi:10.4049/jimmunol.2100970
  • Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G, Trichard S, Cesari C, Sapet M, Bosco F. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019;177(7):1701–13 e1716. PMID: 31155232. doi:10.1016/j.cell.2019.04.041
  • Pekar L, Klausz K, Busch M, Valldorf B, Kolmar H, Wesch D, Oberg HH, Krohn S, Boje AS, Gehlert CL. et al. Affinity maturation of B7-H6 translates into enhanced NK cell–mediated tumor cell lysis and improved proinflammatory cytokine release of bispecific immunoligands via NKp30 engagement. J Immunol. 2021;206(1):225–36. PMID: 33268483. doi:10.4049/jimmunol.2001004
  • Raynaud A, Desrumeaux K, Vidard L, Termine E, Baty D, Chames P, Vigne E, Kerfelec B. Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. Oncoimmunology. 2020;10(1):1854529. PMID: 33457075. doi: 10.1080/2162402X.2020.1854529.
  • Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Muller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J. et al. Redirected optimized cell killing (ROCK®): a highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs. 2019;11(5):899–918. PMID: 31172847. doi:10.1080/19420862.2019.1616506
  • Demaria O, Gauthier L, Vetizou M, Blanchard Alvarez A, Vagne C, Habif G, Batista L, Baron W, Belaid N, Girard-Madoux M. et al. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell Rep Med. 2022;3(10):100783. PMID: 36260981. doi:10.1016/j.xcrm.2022.100783
  • Bluemel C, Hausmann S, Fluhr P, Sriskandarajah M, Stallcup WB, Baeuerle PA, Kufer P. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol Immunother. 2010;59(8):1197–209. PMID: 20309546. doi: 10.1007/s00262-010-0844-y.
  • Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu ML, Pham A. et al. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. MAbs. 2021;13(1):1871171. PMID: 33557687. doi:10.1080/19420862.2020.1871171
  • Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, Clark V, Hristopoulos M, Cook R, Slaga D. et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell. 2017;31(3):383–95. PMID: 28262555. doi:10.1016/j.ccell.2017.02.001
  • Boder ET, Jiang W. Engineering antibodies for cancer therapy. Annu Rev Chem Biomol Eng. 2011;2(1):53–75. PMID: 22432610. doi: 10.1146/annurev-chembioeng-061010-114142.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–212. PMID: 28071970. doi: 10.1080/19420862.2016.1268307.
  • Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109(1):74–103. PMID: 31173761. doi: 10.1016/j.xphs.2019.05.031.
  • Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo KM, Huston JS. Seedbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel. 2010;23(4):195–202. PMID: 20299542. doi: 10.1093/protein/gzp094.
  • Schlaeth M, Berger S, Derer S, Klausz K, Lohse S, Dechant M, Lazar GA, Schneider-Merck T, Peipp M, Valerius T. Fc-engineered EGF-R antibodies mediate improved antibody-dependent cellular cytotoxicity (ADCC) against KRAS-mutated tumor cells. Cancer Sci. 2010;101:1080–88. PMID: 20331636. doi:10.1111/j.1349-7006.2010.01505.x.
  • Baumann N, Rosner T, Jansen JHM, Chan C, Marie Eichholz K, Klausz K, Winterberg D, Muller K, Humpe A, Burger R. et al. Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Cancer Sci. 2021;112:3029–40. PMID: 34058788. doi:10.1111/cas.14999.
  • Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, Lammerts van Bueren JJ, Bleeker WK, Parren PW, van de Winkel JG. et al. Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Research. 2008;68(13):4998–5003. PMID: 18593896. doi:10.1158/0008-5472.CAN-07-6226
  • Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17(1):191–216. PMID: 26274600. doi: 10.1146/annurev-bioeng-071114-040733.
  • Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol. 2015;67(2):95–106. PMID: 25637431. doi: 10.1016/j.molimm.2015.01.003.
  • Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C. Bispecific antibodies: from research to clinical application. Front Immunol. 2021;12:626616. PMID: 34025638. doi:10.3389/fimmu.2021.626616.
  • Elshiaty M, Schindler H, Christopoulos P. Principles and Current clinical landscape of multispecific antibodies against cancer. Int J Mol Sci. 2021;22(11):5632. PMID: 34073188. doi: 10.3390/ijms22115632.
  • Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H, Mentz K, Peipp M, Lang P, Oduncu F. et al. A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother (1991). 2008;31:871–84. PMID: 18833000. doi:10.1097/CJI.0b013e318186c8b4.
  • Reusch U, Burkhardt C, Fucek I, Le Gall F, Le Gall M, Hoffmann K, Knackmuss SH, Kiprijanov S, Little M, Zhukovsky EA. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs. 2014;6(3):728–39. PMID: 24670809. doi: 10.4161/mabs.28591.
  • Colomar-Carando N, Gauthier L, Merli P, Loiacono F, Canevali P, Falco M, Galaverna F, Rossi B, Bosco F, Caratini M. et al. Exploiting natural killer cell engagers to control pediatric B-cell precursor acute lymphoblastic leukemia. Cancer Immunol Res. 2022;10(3):291–302. PMID: 35078821. doi:10.1158/2326-6066.CIR-21-0843
  • Kellner C, Gunther A, Humpe A, Repp R, Klausz K, Derer S, Valerius T, Ritgen M, Bruggemann M, van de Winkel JG. et al. Enhancing natural killer cell-mediated lysis of lymphoma cells by combining therapeutic antibodies with CD20-specific immunoligands engaging NKG2D or NKp30. Oncoimmunology. 2016;5(1):e1058459. PMID: 26942070. doi:10.1080/2162402X.2015.1058459
  • Lipinski B, Arras P, Pekar L, Klewinghaus D, Boje AS, Krah S, Zimmermann J, Klausz K, Peipp M, Siegmund V. et al. NKp46-specific single domain antibodies enable facile engineering of various potent NK cell engager formats. Protein Sci. 2023;32:e4593. PMID: 36775946. doi:10.1002/pro.4593.
  • Weiskopf K, Weissman IL. Macrophages are critical effectors of antibody therapies for cancer. MAbs. 2015;7:303–10. PMID: 25667985. doi:10.1080/19420862.2015.1011450.
  • Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol. 2021;101:108374. PMID: 34824036. doi:10.1016/j.intimp.2021.108374.
  • Pillarisetti K, Powers G, Luistro L, Babich A, Baldwin E, Li Y, Zhang X, Mendonca M, Majewski N, Nanjunda R. et al. Teclistamab is an active T cell–redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. Blood Adv. 2020;4(18):4538–49. PMID: 32956453. doi:10.1182/bloodadvances.2020002393
  • Goldsmith SR, Streeter S, Covut F. Bispecific Antibodies for the Treatment of Multiple Myeloma. Curr Hematol Malig Rep. 2022;17(6):286–97. PMID: 36029366. doi: 10.1007/s11899-022-00675-3.
  • Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32. PMID: 28421387. doi: 10.1007/s13238-017-0408-4.
  • Repp R, Kellner C, Muskulus A, Staudinger M, Nodehi SM, Glorius P, Akramiene D, Dechant M, Fey GH, van Berkel PH. et al. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. J Immunol Methods. 2011;373(1–2):67–78. PMID: 21855548. doi:10.1016/j.jim.2011.08.003
  • Klausz K, Berger S, van Bueren JJ L, Derer S, Lohse S, Dechant M, van de Winkel JG, Peipp M, Parren PW, Valerius T. et al. Complement-mediated tumor-specific cell lysis by antibody combinations targeting epidermal growth factor receptor (EGFR) and its variant III (EGFRvIII). Cancer Sci. 2011;102(10):1761–68. PMID: 21718386. doi: 10.1111/j.1349-7006.2011.02019.x.
  • Rosskopf S, Eichholz KM, Winterberg D, Diemer KJ, Lutz S, Munnich IA, Klausz K, Rosner T, Valerius T, Schewe DM. et al. Enhancing CDC and ADCC of CD19 antibodies by combining Fc protein-engineering with Fc glyco-engineering. Antibodies (Basel). 2020;9(4):63. PMID: 33212776. doi:10.3390/antib9040063
  • Kaempffe A, Dickgiesser S, Rasche N, Paoletti A, Bertotti E, De Salve I, Sirtori FR, Kellner R, Konning D, Hecht S. et al. Effect of conjugation site and technique on the stability and pharmacokinetics of antibody-drug conjugates. J Pharm Sci. 2021;110:3776–85. PMID: 34363839. doi:10.1016/j.xphs.2021.08.002.