1,799
Views
0
CrossRef citations to date
0
Altmetric
Report

Production of antibodies and antibody fragments containing non-natural amino acids in Escherichia coli

, , , , , , , , , , , , , , , , , , , & show all
Article: 2316872 | Received 29 Sep 2023, Accepted 06 Feb 2024, Published online: 21 Feb 2024

References

  • Suzuki M, Kato C, Kato A. Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J Toxicol Pathol. 2015;28(3):133–11. doi:10.1293/tox.2015-0031.
  • Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021;20(7):491–95. doi:10.1038/d41573-021-00079-7.
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020;9(3):34. doi:10.3390/antib9030034.
  • Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Sig Transduct Target Ther. 2022;7:1–28. doi:10.1038/s41392-021-00868-x.
  • Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, JHSeki CA, Ou X, Fowler E, Ashman N, Takada Y, Takada Y. et al. Site-selective modification strategies in antibody–drug conjugates. Chem Soc Rev [Internet]. 2021;50(2):1305–53. doi:10.1039/D0CS00310G.
  • Kline T, Steiner AR, Penta K, Sato AK, Hallam TJ, Yin G. Methods to Make Homogenous Antibody Drug Conjugates. Pharm Res. 2015;32(11):3480–93. doi:10.1007/s11095-014-1596-8.
  • Akkapeddi P, Azizi S-A, Freedy AM, Cal PHMSD, Gois PMP, Bernardes GJL. Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry. Chem Sci. 2016;7(5):2954–63. doi:10.1039/C6SC00170J.
  • Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32. doi:10.1038/nbt.1480.
  • Lieser RM, Yur D, Sullivan MO, Chen W. Site-specific bioconjugation approaches for enhanced delivery of protein therapeutics and protein drug carriers. Bioconjugate Chem. 2020;31(10):2272–82. doi:10.1021/acs.bioconjchem.0c00456.
  • Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45. doi:10.4161/mabs.27022.
  • Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K. et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A. 2012;109(40):16101–06. doi:10.1073/pnas.1211023109.
  • Roy G, Reier J, Garcia A, Martin T, Rice M, Wang J, Prophet M, Christie R, Dall’acqua W, Ahuja S. et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs. 2019;12(1):1684749. doi:10.1080/19420862.2019.1684749.
  • Robinson M-P, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ. et al. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun. 2015;6(1):8072. doi:10.1038/ncomms9072.
  • Huleani S, Roberts MR, Beales L, Papaioannou EH. Escherichia coli as an antibody expression host for the production of diagnostic proteins: significance and expression. Crit Rev Biotechnol. 2022;42(5):756–73. doi:10.1080/07388551.2021.1967871.
  • Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P. et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods. 2002;263(1–2):133–47. doi:10.1016/S0022-1759(02)00036-4.
  • Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains [internet. In: Methods in enzymology. Elsevier;2021. pp. 105–44. cited 2023 Jan 6. https://linkinghub.elsevier.com/retrieve/pii/S0076687921002998.
  • Production of antibodies and antibody fragments in Escherichia coli | SpringerLink [Internet]. [Accessed 2023 Mar 7]. https://link.springer.com/protocol/10.1007/978-3-642-01147-4_26.
  • Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, Tran C, Uter NT, Yin G, Rivers PJ. et al. Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjugate Chem. 2014;25(2):351–61. doi:10.1021/bc400490z.
  • Groff D, Carlos NA, Chen R, Hanson JA, Liang S, Armstrong S, Li X, Zhou S, Steiner A, Hallam TJ. et al. Development of an E. coli strain for cell‐free ADC manufacturing. Biotechnol Bioeng. 2022;119(1):162–75. doi:10.1002/bit.27961.
  • Young TS, Ahmad I, Brock A, Schultz PG. Expanding the genetic repertoire of the methylotrophic yeast pichia pastoris. Biochemistry. 2009;48(12):2643–53. doi:10.1021/bi802178k.
  • de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact. 2009;8(1):26. doi:10.1186/1475-2859-8-26.
  • Arakawa T, Ejima D. Refolding technologies for antibody fragments. Antibodies. 2014;3(2):232–41. doi:10.3390/antib3020232.
  • Misawa S, Kumagai I. Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Biopolymers. 1999;51(4):297–307. doi:10.1002/(SICI)1097-0282(1999)51:4<297:AID-BIP5>3.0.CO;2-I.
  • Sarker A, Rathore AS, Gupta RD. Evaluation of scFv protein recovery from E. coli by in vitro refolding and mild solubilization process. Microb Cell Fact. 2019;18(1):5. doi:10.1186/s12934-019-1053-9.
  • Reilly D, Yansura DG. Production of Antibodies and Antibody Fragments in Escherichia coli | SpringerLink. Internet. [Accessed 2023 Mar 7]. https://link.springer.com/protocol/10.1007/978-3-642-01147-4_26
  • Hanson J, Groff D, Carlos A, Usman H, Fong K, Yu A, Armstrong S, Dwyer A, Masikat MR, Yuan D. et al. An integrated in vivo/in vitro protein production platform for site-specific antibody drug conjugates. Bioengineering. 2023;10(3):304. doi:10.3390/bioengineering10030304.
  • Wang L, Brock A, Herberich B, Schultz PG. Expanding the genetic code of Escherichia coli. Science. 2001;292(5516):498–500. doi:10.1126/science.1060077.
  • Groff D, Wang F, Jockusch S, Turro NJ, Schultz PG. A new strategy to photoactivate green fluorescent protein. Angew Chem Int Ed. 2010;49(42):7677–79. doi:10.1002/anie.201003797.
  • Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv antibody: principles and clinical application. J Immunol Res. 2012;2012:e980250. doi:10.1155/2012/980250.
  • Nelson AL. Antibody fragments. MAbs. 2010;2(1):77–83. doi:10.4161/mabs.2.1.10786.
  • Wang R, Xiang S, Feng Y, Srinivas S, Zhang Y, Lin M, Wang S. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone skp. Front Cell Infect Microbiol [Internet]. 2013; 3. 10.3389/fcimb.2013.00072
  • Zhang J, Zhao Y, Cao Y, Yu Z, Wang G, Li Y, Ye X, Li C, Lin X, Song H. sRNA-based screening chromosomal gene targets and modular designing Escherichia coli for high-titer production of aglycosylated Immunoglobulin G. ACS Synth Biol. 2020;9(6):1385–94. doi:10.1021/acssynbio.0c00062.
  • Guo J, Melançon CE, Lee HS, Groff D, Schultz PG. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angew Chem Int Ed Engl. 2009;48(48):9148–51. doi:10.1002/anie.200904035.
  • Cellitti SE, Jones DH, Lagpacan L, Hao X, Zhang Q, Hu H, Brittain SM, Brinker A, Caldwell J, Bursulaya B. et al. In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc. 2008;130(29):9268–81. doi:10.1021/ja801602q.
  • Tan Z, Ehamparanathan V, Ren T, Tang P, Hoffman L, Kuang J, Liu P, Huang C, Du C, Tao L. et al. On-column disulfide bond formation of monoclonal antibodies during protein a chromatography eliminates low molecular weight species and rescues reduced antibodies. MAbs. 2020;12(1):1829333. doi:10.1080/19420862.2020.1829333.
  • Abrahams CL, Li X, Embry M, Yu A, Krimm S, Krueger S, Greenland NY, Wen KW, Jones C, DeAlmeida V. et al. Targeting CD74 in multiple myeloma with the novel, site-specific antibody-drug conjugate STRO-001. Oncotarget. 2018;9(102):37700–14. doi:10.18632/oncotarget.26491.
  • Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. Shuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11(1):753. doi:10.1186/1475-2859-11-56.
  • Groff D. E. coli strains having an oxidative cytoplasm [Internet]. 2023 [Accessed 2023 Aug 22]. https://patents.google.com/patent/US20230002722A1/en?inventor=daniel+groff&oq=daniel+groff
  • Rashid MH. Full-length recombinant antibodies from Escherichia coli: production, characterization, effector function (Fc) engineering, and clinical evaluation. MAbs. 2022;14(1):2111748. doi:10.1080/19420862.2022.2111748.
  • Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100(8):3451–61. doi:10.1007/s00253-016-7388-9.
  • Riley NM, Hebert AS, Westphall MS, Coon JJ. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat Commun. 2019;10(1):1311. doi:10.1038/s41467-019-09222-w.
  • Wu TT, Kabat EA. An analysis of the sequences of the variable regions of bence jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970;132(2):211–50. doi:10.1084/jem.132.2.211.
  • Groff D, Armstrong S, Rivers PJ, Zhang J, Yang J, Green E, Rozzelle J, Liang S, Kittle JD, Steiner AR. et al. Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins. MAbs. 2014;6(3):671–78. doi:10.4161/mabs.28172.