2,964
Views
0
CrossRef citations to date
0
Altmetric
Report

Do antibody CDR loops change conformation upon binding?

, , & ORCID Icon
Article: 2322533 | Received 10 Nov 2023, Accepted 20 Feb 2024, Published online: 13 Mar 2024

References

  • Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet T-S, Flem-Karlsen K, Frank R, Bhushan Mehta B, Ha Vu M. et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. mAbs. 2022;14(1):2008790. PMID: 35293269. doi:10.1080/19420862.2021.2008790.
  • Hummer AM, Abanades B, Deane CM. Advances in computational structure-based antibody design. Curr Opin Struct Biol. 2022;74:102379. doi:10.1016/j.sbi.2022.102379.
  • Martin ACR, Allen J. Bioinformatics tools for antibody engineering. In: Duebel S, Reichert J, editors. Handbook of therapeutic antibodies. John Wiley & Sons, Ltd; 2014.
  • Roberts S, Cheetham JC, Rees AR. Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature. 1987;328(6132):731–14. doi:10.1038/328731a0.
  • Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987;196(4):901–17. doi:10.1016/0022-2836(87)90412-8.
  • Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol. 1997;273(4):927–48. doi:10.1006/jmbi.1997.1354.
  • Martin ACR, Thornton JM. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol. 1996;263(5):800–15. doi:10.1006/jmbi.1996.0617.
  • North B, Lehmann A, Dunbrack RL. A new clustering of antibody CDR loop conformations. J Mol Biol. 2011;406(2):228–56. doi:10.1016/j.jmb.2010.10.030.
  • Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci. 2010;35(10):539–46. doi:10.1016/j.tibs.2010.04.009.
  • Koshland DE Jr. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci. 1958;44(2):98–104. doi:10.1073/pnas.44.2.98.
  • Foote J, Milstein C. Conformational isomerism and the diversity of antibodies. Proc Natl Acad Sci. 1994;91(22):10370–74. doi:10.1073/pnas.91.22.10370.
  • Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC. Structural insights into the evolution of an antibody combining site. Science. 1997;276(5319):1665–69. doi:10.1126/science.276.5319.1665.
  • James LC, Roversi P, Tawfik DS. Antibody multispecificity mediated by conformational diversity. Science. 2003;299(5611):1362–67. doi:10.1126/science.1079731.
  • Ferdous S, Martin ACR. AbDb: antibody structure database—a database of PDB-derived antibody structures. Database. 2018;2018:bay040. doi:10.1093/database/bay040.
  • Li W, Godzik A. CD-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.Bioinformatics. (2006);22(13):1658–59. doi:10.1093/bioinformatics/btl158.
  • Abhinandan KR, Martin ACR. Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol. 2008;45(14):3832–39. doi:10.1016/j.molimm.2008.05.022.
  • Bajorath J, Harris L, Novotny J. Conformational similarity and systematic displacement of complementarity determining region loops in high resolution antibody x-ray structures. J Biol Chem. 1995;270(38):22081–84. doi:10.1074/jbc.270.38.22081.
  • Abhinandan KR, Martin ACR. Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel. 2010;23(9):689–97. doi:10.1093/protein/gzq043.
  • Martin ACR, Cheetham JC, Rees AR. Molecular modeling of antibody combining sites. Methods Enzymology. 1991;203:121–53.
  • Martin ACR, Cheetham JC, Rees AR. Modeling antibody hypervariable loops: a combined algorithm. Proc Natl Acad Sci. 1989;86(23):9268–72. doi:10.1073/pnas.86.23.9268.
  • McLachlan AD. Rapid comparison of protein structures. Acta Crystallographer. 1982;A38(6):871–73. doi:10.1107/S0567739482001806.
  • Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315(5814):972–76. doi:10.1126/science.1136800.
  • Martin ACR, MacArthur MW, Thornton JM. Assessment of comparative modeling in CASP2. Proteins: Struct Funct Bioinf. 1997;29(Suppl 1):14–28.
  • Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol. 2012;857:231–57.
  • Williams CJ, Videau LL, Richardson DC, Richardson JS. Cis-nonPro peptides: genuine occurrences and their functional roles. bioRxiv. 2018:324517. doi: 10.1101/324517.
  • Herzberg O, Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins Struct Funct Bioinf. 1991;11(3):223–29. doi:10.1002/prot.340110307.
  • Stoddard BL, Pietrokovski S. Breaking up is hard to do. Nat Struct Biol. 1998;5(1):3–5. doi:10.1038/nsb0198-3.
  • Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR, Gray JJ, Weng Z, Pierce BG. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants. Structure. 2021;29(6):606–21.e5. doi:10.1016/j.str.2021.01.005.