2,878
Views
0
CrossRef citations to date
0
Altmetric
Report

RUBY® – a tetravalent (2+2) bispecific antibody format with excellent functionality and IgG-like stability, pharmacology and developability properties

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2330113 | Received 02 Nov 2023, Accepted 08 Mar 2024, Published online: 25 Mar 2024

References

  • Root AR, Guntas G, Katragadda M, Apgar JR, Narula J, Chang CS, Hanscom S, McKenna M, Wade J, Meade C. et al. Discovery and optimization of a novel anti-GUCY2c x CD3 bispecific antibody for the treatment of solid tumors. Mabs-Austin. 2021;13(1):1850395. doi:10.1080/19420862.2020.1850395.
  • Burt R, Warcel D, Fielding AK. Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Hum Vaccin Immunother. 2019;15(3):594–17. doi:10.1080/21645515.2018.1540828.
  • Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, Kuruvilla J, Canales M, Dietrich S, Fay K. et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 2022;23(8):1055–65. doi:10.1016/S1470-2045(22)00335-7.
  • Kang C. Teclistamab: First Approval. Drugs. 2022;82(16):1613–19. doi:10.1007/s40265-022-01793-1.
  • Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PWHI, Strohl WR. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 2021;296:100641. doi:10.1016/j.jbc.2021.100641.
  • Pang X, Huang Z, Zhong T, Zhang P, Wang ZM, Xia M, Li B. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. Mabs-Austin. 2023;15(1):2180794. doi:10.1080/19420862.2023.2180794.
  • Yaoi H, Shida Y, Ogiwara K, Kitazawa T, Shima M, Nogami K. Emicizumab enhances thrombus formation in vitro under high shear flow conditions in whole blood from patients with type 1 and type 3 von Willebrand disease. Haemophilia. 2022;28(5):694–701. doi:10.1111/hae.14581.
  • Regula JT, Lundh von Leithner P, Foxton R, Barathi VA, Cheung CMG, Bo Tun SB, Wey YS, Iwata D, Dostalek M, Moelleken J. et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med. 2016;8(11):1265–88. doi:10.15252/emmm.201505889.
  • Hinner MJ, Aiba RSB, Jaquin TJ, Berger S, Dürr MC, Schlosser C, Allersdorfer A, Wiedenmann A, Matschiner G, Schüler J. et al. Tumor-localized costimulatory T-Cell engagement by the 4-1BB/HER2 bispecific antibody-anticalin fusion PRS-343. Clin Cancer Res. 2019;25(19):5878–89. doi:10.1158/1078-0432.CCR-18-3654.
  • Nelson MH, Fritzell S, Miller R, Werchau D, Van Citters D, Nilsson A, Misher L, Ljung L, Bader R, Deronic A. et al. The bispecific tumor antigen-conditional 4–1BB x 5T4 agonist, ALG.APV-527, mediates strong T-Cell activation and potent antitumor activity in preclinical studies. Mol Cancer Ther. 2023;22(1):89–101. doi:10.1158/1535-7163.MCT-22-0395.
  • The Antibody Society. Therapeutic Monoclonal Antibodies Approved Or In Regulatory Review. 2024 Mar 04. www.antibodysociety.org/antibody/therapeutics/product/data
  • Food and Drug Administration Bispecific Antibodies: an area of research and clinical applications. 2024 Jan 26. https://www.fda.gov/drugs/news-events-human-drugs/bispecific-antibodies-area-research-and-clinical-applications
  • Vasilenko EA, Mokhonov VV, Gorshkova EN, Astrakhantseva IV. Bispecific antibodies: formats and areas of application. Mol Biol (Mosk). 2018;52(3):380–93. doi:10.7868/S0O26898418030035.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. Mabs-Austin. 2017;9(2):182–212. doi:10.1080/19420862.2016.1268307.
  • Manikwar P, Mulagapati SHR, Kasturirangan S, Moez K, Rainey GJ, Lobo B. Characterization of a novel bispecific antibody with improved conformational and chemical stability. J Pharm Sci. 2020;109(1):220–32. doi:10.1016/j.xphs.2019.06.025.
  • Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T. et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One. 2013;8(2):e57479. doi:10.1371/journal.pone.0057479.
  • Dengl S, Mayer K, Bormann F, Duerr H, Hoffmann E, Nussbaum B, Tischler M, Wagner M, Kuglstatter A, Leibrock L. et al. Format chain exchange (FORCE) for high-throughput generation of bispecific antibodies in combinatorial binder-format matrices. Nat Commun. 2020;11(1):4974. doi:10.1038/s41467-020-18477-7.
  • Gera N. The evolution of bispecific antibodies. Expert Opin Biol Ther. 2022;22(8):945–49. doi:10.1080/14712598.2022.2040987.
  • Nie S, Wang Z, Moscoso-Castro M, D’Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther. 2020;3(1):18–62. doi:10.1093/abt/tbaa003.
  • Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, Parnes J, Mytych DT. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer. 2022;10(4):e004225. doi:10.1136/jitc-2021-004225.
  • Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394–406. doi:10.1111/imm.12889.
  • Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. Mabs-Austin. 2019;11(1):45–57. doi:10.1080/19420862.2018.1548233.
  • Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci. 2015;104(6):1885–98. doi:10.1002/jps.24430.
  • Liu Z, Leng EC, Gunasekaran K, Pentony M, Shen M, Howard M, Stoops J, Manchulenko K, Razinkov V, Liu H. et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015;290(12):7535–62. doi:10.1074/jbc.M114.620260.
  • Dillon M, Yin Y, Zhou J, McCarty L, Ellerman D, Slaga D, Junttila TT, Han G, Sandoval W, Ovacik MA. et al. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. Mabs-Austin. 2017;9(2):213–30. doi:10.1080/19420862.2016.1267089.
  • Bonisch M, Sellmann C, Maresch D, Halbig C, Becker S, Toleikis L, Hock B, Rüker F. Novel CH1: CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng Des Sel. 2017;30(9):685–96. doi:10.1093/protein/gzx044.
  • Kiyoshi M, Caaveiro JMM, Kawai T, Tashiro S, Ide T, Asaoka Y, Hatayama K, Tsumoto K. Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI. Nat Commun. 2015;6(1):6866. doi:10.1038/ncomms7866.
  • Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, Rispens T, Vidarsson G. Affinity of human IgG subclasses to mouse Fc gamma receptors. Mabs-Austin. 2017;9(5):767–73. doi:10.1080/19420862.2017.1323159.
  • Hagerbrand K, Varas L, Deronic A, Nyesiga B, Sundstedt A, Ljung L, Sakellariou C, Werchau D, Thagesson M, Gomez Jimenez D. et al. Bispecific antibodies targeting CD40 and tumor-associated antigens promote cross-priming of T cells resulting in an antitumor response superior to monospecific antibodies. J Immunother Cancer. 2022;10:e005018. doi:10.1136/jitc-2022-005018.
  • Delidakis G, Kim JE, George K, Georgiou G. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu Rev Biomed Eng. 2022;24(1):249–74. doi:10.1146/annurev-bioeng-082721-024500.
  • Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, Pham A, Bolton G, McDonough D, Lindquist K. et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. Mabs-Austin. 2015;7(2):331–43. doi:10.1080/19420862.2015.1008353.
  • Datta-Mannan A, Croy JE, Schirtzinger L, Torgerson S, Breyer M, Wroblewski VJ. Aberrant bispecific antibody pharmacokinetics linked to liver sinusoidal endothelium clearance mechanism in cynomolgus monkeys. Mabs-Austin. 2016;8(5):969–82. doi:10.1080/19420862.2016.1178435.
  • Ahmed L, Gupta P, Martin KP, Scheer JM, Nixon AE, Kumar S. Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Proc Natl Acad Sci U S A. 2021;118(37). doi:10.1073/pnas.2020577118.
  • Jain T, Boland T, Vasquez M. Identifying developability risks for clinical progression of antibodies using high-throughput in vitro and in silico approaches. Mabs-Austin. 2023;15(1):2200540. doi:10.1080/19420862.2023.2200540.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y. et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 2017;114(5):944–49. doi:10.1073/pnas.1616408114.
  • Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A. et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. Mabs-Austin. 2019;11(2):239–64. doi:10.1080/19420862.2018.1553476.
  • Sawant MS, Streu CN, Wu L, Tessier PM. Toward drug-like multispecific antibodies by design. Int J Mol Sci. 2020;21:7496. doi:10.3390/ijms21207496.
  • Garber E, Demarest SJ. A broad range of fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355(3):751–57. doi:10.1016/j.bbrc.2007.02.042.
  • Jager M, Pluckthun A. Folding and assembly of an antibody fv fragment, a heterodimer stabilized by antigen. J Mol Biol. 1999;285(5):2005–19. doi:10.1006/jmbi.1998.2425.
  • Demarest SJ, Glaser SM. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 11, 675–87 (2008). 5
  • Loh HP, Mahfut FB, Chen SW, Huang Y, Huo J, Zhang W, Lam KP, Xu S, Yang Y. Manufacturability and functionality assessment of different formats of T-cell engaging bispecific antibodies. Mabs-Austin. 2023;15(1):2231129. doi:10.1080/19420862.2023.2231129.
  • Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and production of bispecific antibodies. Antibodies (Basel). 2019;8(3):43. doi:10.3390/antib8030043.
  • Mehta NK, Pfluegler M, Meetze K, Li B, Sindel I, Vogt F, Marklin M, Heitmann JS, Kauer J, Osburg L. et al. A novel IgG-based FLT3xCD3 bispecific antibody for the treatment of AML and B-ALL. J Immunother Cancer. 2022;10(3):e003882. doi:10.1136/jitc-2021-003882.
  • Friedrich M, Henn A, Raum T, Bajtus M, Matthes K, Hendrich L, Wahl J, Hoffmann P, Kischel R, Kvesic M. et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-Cell–engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13(6):1549–57. doi:10.1158/1535-7163.MCT-13-0956.
  • Root AR, Cao W, Li B, LaPan P, Meade C, Sanford J, Jin M, O’Sullivan C, Cummins E, Lambert M. et al. Development of PF-06671008, a highly potent anti-P-cadherin/Anti-CD3 bispecific DART molecule with extended half-life for the treatment of cancer. Antibodies (Basel). 2016;5(1):6. doi:10.3390/antib5010006.
  • Reusch U, Duell J, Ellwanger K, Herbrecht C, Knackmuss SH, Fucek I, Eser M, McAleese F, Molkenthin V, Le Gall F. et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19 + tumor cells. Mabs. 2015;7(3):584–604. doi:10.1080/19420862.2015.1029216.
  • Kroenke MA, Milton MN, Kumar S, Bame E, White JT. Immunogenicity risk assessment for multi-specific therapeutics. AAPS J. 2021;23(6):115. doi:10.1208/s12248-021-00642-5.
  • Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, Salek-Ardakani S, Kraynov E. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7(1):105. doi:10.1186/s40425-019-0586-0.
  • Hellmann MD, Bivi N, Calderon B, Shimizu T, Delafontaine B, Liu ZT, Szpurka AM, Copeland V, Hodi FS, Rottey S. et al. Safety and Immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin Cancer Res. 2021;27(10):2773–81. doi:10.1158/1078-0432.CCR-20-3716.
  • Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109(1):169–90. doi:10.1016/j.xphs.2019.08.009.
  • Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–87. doi:10.1002/jps.22276.
  • Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110. doi:10.1159/000385919.
  • Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ. et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-fc-coupled drugs. J Immunol. 2003;170(7):3528–33. doi:10.4049/jimmunol.170.7.3528.
  • Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS. FcRn: the architect behind the immune and nonimmune functions of IgG and albumin. The Journal Of Immunology. 2015;194(10):4595–603. doi:10.4049/jimmunol.1403014.
  • Xenaki KT, Oliveira S, van Bergen En Henegouwen PMP. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors. Front Immunol. 2017;8:1287. doi:10.3389/fimmu.2017.01287.
  • Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60(12):1421–34. doi:10.1016/j.addr.2008.04.012.
  • Li Z, Krippendorff B-F, Sharma S, Walz AC, Lavé T, Shah DK. Influence of molecular size on tissue distribution of antibody fragments. Mabs-Austin. 2016;8(1):113–19. doi:10.1080/19420862.2015.1111497.
  • Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009;8(10):2861–71. doi:10.1158/1535-7163.MCT-09-0195.
  • Li Z, Li Y, Chang H-P, Chang H-Y, Guo L, Shah DK. Effect of size on solid tumor disposition of protein therapeutics. Drug Metab Dispos. 2019;47(10):1136–45. doi:10.1124/dmd.119.087809.
  • Knight T, Callaghan MU. The role of emicizumab, a bispecific factor IXa- and factor X-directed antibody, for the prevention of bleeding episodes in patients with hemophilia a. Ther Adv Hematol. 2018;9(10):319–34. doi:10.1177/2040620718799997.
  • Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E, Wong A, Tam L, Newman R, Vuillemenot BR. et al. An anti-CD3/anti–CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 2017;129(5):609–18. doi:10.1182/blood-2016-08-735365.
  • Zuch de Zafra CL, Fajardo F, Zhong W, Bernett MJ, Muchhal US, Moore GL, Stevens J, Case R, Pearson JT, Liu S. et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell–recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res. 2019;25(13):3921–33. doi:10.1158/1078-0432.CCR-18-2752.
  • Chodorge M, Züger S, Stirnimann C, Briand C, Jermutus L, Grütter MG, Minter RR. A series of fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency. Cell Death Differ. 2012;19(7):1187–95. doi:10.1038/cdd.2011.208.
  • Wulfing C, Dovedi SJ. For optimal antibody effectiveness, sometimes less is more. Nature. 2023;614(7948):416–18. doi:10.1038/d41586-023-00244-5.
  • Liu Z, Stoll VS, DeVries PJ, Jakob CG, Xie N, Simmer RL, Lacy SE, Egan DA, Harlan JE, Lesniewski RR. et al. A potent erythropoietin-mimicking human antibody interacts through a novel binding site. Blood. 2007;110(7):2408–13. doi:10.1182/blood-2007-04-083998.
  • Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001;61(12):4750–55.
  • Mangsbo SM, Broos S, Fletcher E, Veitonmäki N, Furebring C, Dahlén E, Norlén P, Lindstedt M, Tötterman TH, Ellmark P. et al. The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell–Dependent tumor immunity. Clin Cancer Res. 2015;21(5):1115–26. doi:10.1158/1078-0432.CCR-14-0913.
  • Kvarnhammar AM, Veitonmäki N, Hägerbrand K, Dahlman A, Smith KE, Fritzell S, von Schantz L, Thagesson M, Werchau D, Smedenfors K. et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J Immunother Cancer. 2019;7(1):103. doi:10.1186/s40425-019-0570-8.