2,757
Views
0
CrossRef citations to date
0
Altmetric
Commentary and Views

In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies

, , , , , , & show all
Article: 2333729 | Received 04 Jan 2024, Accepted 19 Mar 2024, Published online: 27 Mar 2024

References

  • Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–15. doi:10.1016/j.clim.2013.09.006.
  • De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–490. doi:10.1016/j.it.2007.07.011.
  • Immunogenicity Assessment for Therapeutic Protein Products. Accessed March 5, 2024. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-assessment-therapeutic-protein-products
  • Karle A, Spindeldreher S, Kolbinger F. Secukinumab, a novel anti–IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity. Mabs-austin. 2016;8(3):536–550. doi:10.1080/19420862.2015.1136761.
  • Xue L, Hickling T, Song R, Nowak J, Rup B. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody. Clin Exp Immunol. 2015;183(1):102–113. doi:10.1111/cei.12711.
  • Vultaggio A, Petroni G, Pratesi S, Nencini F, Cammelli D, Milla M, Prignano F, Annese V, Romagnani S, Maggi E. et al. Circulating T cells to infliximab are detectable mainly in treated patients developing anti-drug antibodies and hypersensitivity reactions. Clin Exp Immunol. 2016;186(3):364–372. doi:10.1111/cei.12858.
  • Ito S, Ikuno T, Mishima M, Yano M, Hara T, Kuramochi T, Sampei Z, Wakabayashi T, Tabo M, Chiba S. et al. In vitro human helper T-cell assay to screen antibody drug candidates for immunogenicity. J Immunotoxicol. 2019;16(1):125–132. doi:10.1080/1547691X.2019.1604586.
  • Pratesi S, Nencini F, Grosso F, Dies L, Bormioli S, Cammelli D, Maggi E, Matucci A, Vultaggio A. T cell response to infliximab in exposed patients: a longitudinal analysis. Front Immunol. 2019;9:9. doi:10.3389/fimmu.2018.03113.
  • Matucci A, Nencini F, Maggi E, Vultaggio A. Hypersensitivity reactions to biologics used in rheumatology. Expert Rev Clin Immunol. 2019;15(12):1263–1271. doi:10.1080/1744666X.2020.1684264.
  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339–43. doi:10.1093/nar/gky1006.
  • Cohen S, Chung S, Spiess C, Lundin V, Stefanich E, Laing ST, Clark V, Brumm J, Zhou Y, Huang C. et al. An integrated approach for characterizing immunogenic responses toward a bispecific antibody. Mabs-austin. 2021;13(1). doi:10.1080/19420862.2021.1944017.
  • Cohen S, Chung S. In vitro immunogenicity prediction: bridging between innate and adaptive immunity. Bioanalysis. 2021;13(13):1071–1081. doi:10.4155/bio-2021-0077.
  • Karle AC. Applying MAPPs assays to assess drug immunogenicity. Front Immunol. 2020;11:11. doi:10.3389/fimmu.2020.00698.
  • De Groot AS, Martin W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol. 2009;131(2):189–201. doi:10.1016/j.clim.2009.01.009.
  • Hai S, JA M, Knopf PM, Martin W, De Groot AS. Immunogenicity screening using in silico methods: correlation between T‐Cell epitope content and clinical immunogenicity of monoclonal antibodies. Therapeutic monoclonal antibodies. Wiley; 2009pp. 417–37. 10.1002/9780470485408.ch18.
  • Koren E, De Groot AS, Jawa V, Beck KD, Boone T, Rivera D, Li L, Mytych D, Koscec M, Weeraratne D. et al. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol. 2007;124(1):26–32. doi:10.1016/j.clim.2007.03.544.
  • Yogurtcu ON, Sauna ZE, JR M, Tegenge MA, Yang H. Tcpro: an in silico risk assessment tool for biotherapeutic protein immunogenicity. AAPS J. 2019;21(5):96. doi:10.1208/s12248-019-0368-0.
  • Chen X, Hickling TP, Vicini P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 2-model applications. CPT Pharmacometrics Syst Pharmacol. 2014;3(9):e134. doi:10.1038/psp.2014.31.
  • Wang F, Li X, Swanson M, Guetschow E, Winston M, Smith JP, Hoyt E, Liu Z, Richardson D, Bu X. et al. Holistic analytical characterization and risk assessment of residual host cell protein impurities in an active pharmaceutical ingredient synthesized by biocatalysts. Biotechnol Bioeng. 2022;119(8):2088–2104. doi:10.1002/bit.28112.
  • Gokemeijer J, Jawa V, Mitra-Kaushik S. How close are we to profiling immunogenicity risk using in silico algorithms and in vitro methods?: an industry perspective. AAPS J. 2017;19(6):1587–1592. doi:10.1208/s12248-017-0143-z.
  • Venkataramani S, Ernst R, Derebe MG, Wright R, Kopenhaver J, Jacobs SA, Singh S, Ganesan R. In pursuit of stability enhancement of a prostate cancer targeting antibody derived from a transgenic animal platform. Sci Rep. 2020;10(1):9722. doi:10.1038/s41598-020-66636-z.
  • Tolcher AW, Sweeney CJ, Papadopoulos K, Patnaik A, Chiorean EG, Mita AC, Sankhala K, Furfine E, Gokemeijer J, Iacono L. et al. Phase I and pharmacokinetic study of CT-322 (BMS-844203), a Targeted Adnectin Inhibitor of VEGFR-2 Based on a Domain of Human Fibronectin. Clin Cancer Res. 2011;17(2):363–371. doi:10.1158/1078-0432.CCR-10-1411.
  • Brinth AR, Svenson K, Mosyak L, Cunningham O, Hickling T, Lambert M. Crystal structure of ultra-humanized anti-pTau fab reveals how germline substitutions humanize CDRs without loss of binding’. Sci Rep. 2022;12(1):8699. doi:10.1038/s41598-022-12838-6.
  • Zhu D, Hadjivassiliou H, Jennings C, Mikolon D, Ammirante M, Acharya S, Lloyd J, Abbasian M, Narla RK, Piccotti JR. et al. CC-96673 (BMS-986358), an affinity-tuned anti-CD47 and CD20 bispecific antibody with fully functional fc, selectively targets and depletes non-Hodgkin’s lymphoma. Mabs-austin. 2024;16(1):2310248. doi:10.1080/19420862.2024.2310248.
  • Seeliger D, Tosatto SCE. Development of scoring functions for antibody sequence assessment and optimization. PloS One. 2013;8(10):e76909. doi:10.1371/journal.pone.0076909.
  • De Groot AS, Jesdale BM, Szu E, Schafer JR, Chicz RM, Deocampo G. An interactive web site providing Major histocompatibility ligand predictions: application to HIV research. AIDS Res Hum Retroviruses. 1997;13(7):529–31. doi:10.1089/aid.1997.13.529.
  • Harding FA, Stickler MM, Razo J, DuBridge R. The immunogenicity of humanized and fully human antibodies. Mabs-austin. 2010;2(3):256–265. doi:10.4161/mabs.2.3.11641.
  • De Groot AS, Desai AK, Lelias S, Miah SMS, Terry FE, Khan S, Li C, Yi JS, Ardito M, Martin WD. et al. Immune tolerance-adjusted personalized immunogenicity prediction for pompe disease. Front Immunol. 2021;12:12. doi:10.3389/fimmu.2021.636731.
  • Haltaufderhyde K, Roberts BJ, Khan S, Terry F, Boyle CM, McAllister M, Martin W, Rosenberg A, De Groot AS. Immunoinformatic risk assessment of Host cell proteins during process development for biologic therapeutics. AAPS J. 2023;25(5):87. doi:10.1208/s12248-023-00852-z.
  • De Groot AS, Roberts BJ, Mattei A, Lelias S, Boyle C, Martin WD. Immunogenicity risk assessment of synthetic peptide drugs and their impurities. Drug Discov Today. 2023;28(10):103714. doi:10.1016/j.drudis.2023.103714.
  • Inaba H, Martin W, Ardito M, De Groot AS, De Groot LJ. The role of glutamic or aspartic acid in position four of the epitope binding motif and Thyrotropin Receptor-Extracellular Domain epitope Selection in graves’ disease. J Clin Endocrinol Metab. 2010;95(6):2909–2916. doi:10.1210/jc.2009-2393.
  • De Groot AS, Skowron G, White JR, Boyle C, Richard G, Serreze D, Martin WD. Therapeutic administration of Tregitope-Human Albumin Fusion with insulin peptides to promote antigen-specific adaptive tolerance induction. Sci Rep. 2019;9(1):16103. doi:10.1038/s41598-019-52331-1.
  • Hrdinová J, Verbij FC, Kaijen PHP, Hartholt RB, van Alphen F, Lardy N, ten Brinke A, Vanhoorelbeke K, Hindocha PJ, De Groot AS. et al. Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ. Haematologica. 2018;103(6):1083–1092. doi:10.3324/haematol.2017.179119.
  • Makowski EK, Wang T, Zupancic JM, Huang J, Wu L, Schardt JS, De Groot AS, Elkins SL, Martin WD, Tessier PM. et al. Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning. Nat Biomed Eng. Published online September 4, 2023;8(1):45–56. doi:10.1038/s41551-023-01074-6.
  • Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines. 2022;21(2):173–184. doi:10.1080/14760584.2022.2012456.
  • Eickhoff CS, Meza KA, Terry FE, Colbert CG, Blazevic A, Gutiérrez AH, Stone ET, Brien JD, Pinto AK, El Sahly HM. et al. Identification of immunodominant T cell epitopes induced by natural Zika virus infection. Front Immunol. 2023;14:14. doi:10.3389/fimmu.2023.1247876.
  • De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G, Hoft DF, Ross TM, Noe AR, Takahashi Y. et al. Better Epitope Discovery, Precision Immune Engineering, and accelerated vaccine design using immunoinformatics tools. Front Immunol. 2020;11:11. doi:10.3389/fimmu.2020.00442.
  • Schafer J. Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine. 1998;16(19):1880–1884. doi:10.1016/S0264-410X(98)00173-X.
  • Gutiérrez AH, Loving C, Moise L, Terry FE, Brockmeier SL, Hughes HR, Martin WD, De Groot AS. In vivo validation of predicted and conserved T cell epitopes in a swine influenza Model. PloS One. 2016;11(7):e0159237. doi:10.1371/journal.pone.0159237.
  • De Groot AS, Kazi ZB, Martin RF, Terry FE, Desai AK, Martin WD, Kishnani PS. HLA- and genotype-based risk assessment model to identify infantile onset pompe disease patients at high-risk of developing significant anti-drug antibodies (ADA). Clin Immunol. 2019;200:66–70. doi:10.1016/j.clim.2019.01.009.
  • Gutiérrez AH, Martin WD, Bailey-Kellogg C, Terry F, Moise L, De Groot AS. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method. BMC Bioinf. 2015;16(1):290. doi:10.1186/s12859-015-0724-8.
  • Southwood S, Sidney J, Kondo A, Del Guercio M-F, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A. et al. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol. 1998;160(7):3363–3373. doi:10.4049/jimmunol.160.7.3363.
  • Liu M, Degner J, Davis JW, Idler KB, Nader A, Mostafa NM, Waring JF. Identification of HLA-DRB1 association to adalimumab immunogenicity. PloS One. 2018;13(4):e0195325. doi:10.1371/journal.pone.0195325.
  • van de Garde MDB, van Westen E, Poelen MCM, Rots NY, van Els CACM, van de Garde MDB, van Els CACM. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by human CD4 + T cells. Infect Immun. 2019;87(6). doi:10.1128/IAI.00098-19.
  • Weber CA, Mehta PJ, Ardito M, Moise L, Martin B, De Groot AS. T cell epitope: friend or foe? Immunogenicity of biologics in context☆. Adv Drug Deliv Rev. 2009;61(11):965–976. doi:10.1016/j.addr.2009.07.001.
  • McMurry JA, Gregory SH, Moise L, Rivera D, Buus S, De Groot AS. Diversity of Francisella tularensis Schu4 antigens recognized by T lymphocytes after natural infections in humans: identification of candidate epitopes for inclusion in a rationally designed tularemia vaccine. Vaccine. 2007;25(16):3179–3191. doi:10.1016/j.vaccine.2007.01.039.
  • Moise L, JA M, Buus S, Frey S, Martin WD, De Groot AS. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine. 2009;27(46):6471–79. doi:10.1016/j.vaccine.2009.06.018.
  • Moise L, Gutierrez AH, Bailey-Kellogg C, Terry F, Leng Q, Abdel Hady KM, VerBerkmoes NC, Sztein MB, Losikoff PT, Martin WD. et al. The two-faced T cell epitope. Hum Vaccin Immunother. 2013;9(7):1577–86. doi:10.4161/hv.24615.
  • Liu R, Moise L, Tassone R, Gutierrez AH, Terry FE, Sangare K, Ardito MT, Martin WD, De Groot AS. H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Hum Vaccin Immunother. 2015;11(9):2241–52. doi:10.1080/21645515.2015.1052197.
  • Khan S, Parrillo M, Gutierrez AH, Terry FE, Moise L, Martin WD, De Groot AS. Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in Malawi. Hum Vaccin Immunother. 2020;16(2):214–27. doi:10.1080/21645515.2018.1560772.
  • Moise L, Gutierrez A, Kibria F, Martin R, Tassone R, Liu R, Terry F, Martin B, De Groot AS. iVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccin Immunother. 2015;11(9):2312–21. doi:10.1080/21645515.2015.1061159.
  • Vultaggio A, Nencini F, Pratesi S, Cammelli D, Totaro M, Romagnani S, Maggi E, Matucci A. IL-10–producing Infliximab-Specific T Cells Regulate the Antidrug T Cell Response in exposed patients. J Immunol. 2017;199(4):1283–89. doi:10.4049/jimmunol.1700008.
  • He L, De Groot AS, Gutierrez AH, Martin WD, Moise L, Bailey-Kellogg C. Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage. BMC Bioinf. 2014;4(Suppl 4):S1. doi:10.1186/1471-2105-15-S4-S1.
  • Moise L, Beseme S, Tassone R, Liu R, Kibria F, Terry F, Martin W, De Groot AS. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Rev Vaccines. 2016;15(5):607–17. doi:10.1586/14760584.2016.1123098.
  • Losikoff PT, Mishra S, Terry F, Gutierrez A, Ardito MT, Fast L, Nevola M, Martin WD, Bailey-Kellogg C, De Groot AS. et al. HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol. 2015;62(1):48–55. doi:10.1016/j.jhep.2014.08.026.
  • Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (edratide) in patients with active systemic lupus erythematosus: results of phase II study. Lupus Sci Med. 2015;2(1):e000104. doi:10.1136/lupus-2015-000104.
  • van Eden W, Jansen MAA, Ludwig IS, van Eden W, Leufkens P, van der Goes MC, van Laar JM, Broere F. Heat shock proteins can Be surrogate autoantigens for induction of antigen specific therapeutic tolerance in rheumatoid arthritis. Front Immunol. 2019;10:10. doi:10.3389/fimmu.2019.00279.
  • De Groot AS, Rosenberg AS, Miah SMS, Skowron G, Roberts BJ, Lélias S, Terry FE, Martin WD. Identification of a potent regulatory T cell epitope in factor V that modulates CD4+ and CD8+ memory T cell responses. Clin Immunol. 2021;224:108661. doi:10.1016/j.clim.2020.108661.
  • De Groot AS, Moise L, JA M, Wambre E, Van Overtvelt L, Moingeon P, Scott DW, Martin W. Activation of natural regulatory T cells by IgG fc–derived peptide “tregitopes”. Blood. 2008;112(8):3303–11. doi:10.1182/blood-2008-02-138073.
  • Cousens LP, Najafian N, Mingozzi F, Elyaman W, Mazer B, Moise L, Messitt TJ, Su Y, Sayegh M, High K. et al. In vitro and in vivo studies of IgG-derived treg epitopes (tregitopes): a promising new tool for tolerance induction and treatment of autoimmunity. J Clin Immunol. 2013;33(S1):43–49. doi:10.1007/s10875-012-9762-4.
  • van der Marel S. Adeno-associated virus mediated delivery of tregitope 167 ameliorates experimental colitis. World J Gastroenterol. 2012;18(32):4288. doi:10.3748/wjg.v18.i32.4288.
  • Cousens LP, Su Y, McClaine E, Li X, Terry F, Smith R, Lee J, Martin W, Scott DW, De Groot AS. et al. Application of IgG-Derived Natural Treg Epitopes (IgG tregitopes) to Antigen-Specific Tolerance Induction in a murine Model of type 1 diabetes. J Diabetes Res. 2013;2013:1–17. doi:10.1155/2013/621693.
  • Elyaman W, Khoury SJ, Scott DW, De Groot AS. Potential application of Tregitopes as immunomodulating agents in multiple sclerosis. Neurol Res Int. 2011;2011:1–6. doi:10.1155/2011/256460.
  • Hui DJ, Basner-Tschakarjan E, Chen Y, Davidson RJ, Buchlis G, Yazicioglu M, Pien GC, Finn JD, Haurigot V, Tai A. et al. Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes. Mol Ther. 2013;21(9):1727–1737. doi:10.1038/mt.2013.166.
  • Burns JC, Touma R, Song Y, Padilla RL, Tremoulet AH, Sidney J, Sette A, Franco A. Fine specificities of natural regulatory T cells after IVIG therapy in patients with Kawasaki disease. Autoimmunity. 2015;48(3):181–88. doi:10.3109/08916934.2015.1027817.
  • Gutiérrez-González M, Fahad AS, Ardito M. et al. Human antibody immune responses are personalized by selective removal of MHC-II 1 peptide epitopes 2:3. 10.1101/2021.01.15.426750.
  • Hsieh LE, Song J, Tremoulet AH, Burns JC, Franco A. Intravenous immunoglobulin induces IgG internalization by tolerogenic myeloid dendritic cells that secrete IL-10 and expand Fc-specific regulatory T cells. Clin Exp Immunol. 2022;208(3):361–371. doi:10.1093/cei/uxac046.
  • Hsieh LE, Sidney J, Burns JC, Boyle DL, Firestein GS, Altman Y, Sette A, Franco A. IgG epitopes processed and presented by IgG+ B cells induce suppression by Human Thymic-Derived Regulatory T cells. J Immunol. 2021;206(6):1194–203. doi:10.4049/jimmunol.2001009.
  • Prangtaworn P, Chaisri U, Seesuay W, Mahasongkram K, Onlamoon N, Reamtong O, Tungtrongchitr A, Indrawattana N, Chaicumpa W, Sookrung N. et al. Tregitope-linked refined allergen vaccines for immunotherapy in cockroach allergy. Sci Rep. 2018;8(1):15480. doi:10.1038/s41598-018-33680-9.
  • Kedzierska AE, Lorek D, Slawek A, Chelmonska-Soyta A. Tregitopes regulate the tolerogenic immune response and decrease the foetal death rate in abortion-prone mouse matings. Sci Rep. 2020;10(1):10531. doi:10.1038/s41598-020-66957-z.
  • Farhadi Biregani A, Khodadadi A, Doosti A, Asadirad A, Ghasemi Dehcheshmeh M, Ghadiri AA. Allergen specific immunotherapy with plasmid DNA encoding OVA-immunodominant T cell epitope fused to Tregitope in a murine model of allergy. Cell Immunol. 2022;376:104534. doi:10.1016/j.cellimm.2022.104534.
  • Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, Dembele M, Kaveri SV, Mazer BD. Intravenous immunoglobulin: mechanism of action in autoimmune and inflammatory conditions. J Allergy Clin Immunol Pract. 2023;11(6):1688–97. doi:10.1016/j.jaip.2023.04.002.
  • Jawa V, Cousens L, De Groot AS. Immunogenicity of Therapeutic Fusion Proteins: contributory factors and clinical experience. Fusion Protein Technologies for Biopharmaceuticals. Wiley; 2013pp. 75–90. 10.1002/9781118354599.ch5.
  • Jawa V, Maamary J, Swanson M, Zhang S, Montgomery D. Implementing a clinical immunogenicity strategy using preclinical risk assessment outputs. J Pharm Sci. 2022;111(4):960–969. doi:10.1016/j.xphs.2022.01.032.
  • Walsh RE, Lannan M, Wen Y, Wang X, Moreland CA, Willency J, Knierman MD, Spindler L, Liu L, Zeng W. et al. Post-hoc assessment of the immunogenicity of three antibodies reveals distinct immune stimulatory mechanisms. Mabs-austin. 2020;12(1). doi:10.1080/19420862.2020.1764829.
  • Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, Salek-Ardakani S, Kraynov E. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7(1):105. doi:10.1186/s40425-019-0586-0.
  • U.S. Food and Drug Administration. (2015). https://www.fda.gov/files/drugs/published/Presentation—REdI—Highlights-of-Prescribing-Information.pdf.
  • U.S. Food and Drug Administration. OPDIVO highlights of prescribing information. Warnings and Precautions; 2017.
  • Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: from anti-tac to zenapax. Methods. 2005;36(1):69–83. doi:10.1016/j.ymeth.2005.01.007.
  • De Groot AS, Terry F, Cousens L, Martin W. Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics. Expert Rev Clin Pharmacol. 2013;6(6):651–662. doi:10.1586/17512433.2013.835698.
  • Moise L, Song C, Martin WD, Tassone R, De Groot AS, Scott DW. Effect of HLA DR epitope de-immunization of factor VIII in vitro and in vivo. Clin Immunol. 2012;142(3):320–331. doi:10.1016/j.clim.2011.11.010.
  • Mufarrege EF, Giorgetti S, Etcheverrigaray M, Terry F, Martin W, De Groot AS. De-immun ized and F unctional T herapeutic (DeFT) versions of a long lasting recombinant alpha interferon for antiviral therapy. Clin Immunol. 2017;176:31–41. doi:10.1016/j.clim.2017.01.003.
  • De Groot AS, Ross TM, Levitz L, Messitt TJ, Tassone R, Boyle CM, Vincelli AJ, Moise L, Martin W, Knopf PM. et al. C3d adjuvant effects are mediated through the activation of C3d‐specific autoreactive T cells. Immunol Cell Biol. 2015;93(2):189–197. doi:10.1038/icb.2014.89.
  • Burmester GR, Choy E, Kivitz A, Ogata A, Bao M, Nomura A, Lacey S, Pei J, Reiss W, Pethoe-Schramm A. et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76(6):1078–1085. doi:10.1136/annrheumdis-2016-210297.
  • Kierzek AM, Hickling TP, Figueroa I, Kalvass JC, Nijsen M, Mohan K, Veldman GM, Yamada A, Sayama H, Yokoo S. et al. A Quantitative Systems Pharmacology Consortium Approach to managing immunogenicity of therapeutic proteins. CPT Pharmacometrics Syst Pharmacol. 2019;8(11):773–76. doi:10.1002/psp4.12465.
  • Muto A, Yoshihashi K, Takeda M, Kitazawa T, Soeda T, Igawa T, Sakamoto Y, Haraya K, Kawabe Y, Shima M. et al. Anti‐factor IXa/X bispecific antibody (ACE910): hemostatic potency against ongoing bleeds in a hemophilia a model and the possibility of routine supplementation. J Thromb Haemost. 2014;12(2):206–213. doi:10.1111/jth.12474.
  • Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T. et al. Identification and multidimensional optimization of an Asymmetric Bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PloS One. 2013;8(2):e57479. doi:10.1371/journal.pone.0057479.
  • Tangri S, Mothé BR, Eisenbraun J, Sidney J, Southwood S, Briggs K, Zinckgraf J, Bilsel P, Newman M, Chesnut R. et al. Rationally engineered therapeutic proteins with reduced immunogenicity. J Immunol. 2005;174(6):3187–3196. doi:10.4049/jimmunol.174.6.3187.
  • Barbosa M, Celis E. Immunogenicity of protein therapeutics and the interplay between tolerance and antibody responses. Drug Discov Today. 2007;12(15–16):674–681. doi:10.1016/j.drudis.2007.06.005.
  • Rubic-Schneider T, Kuwana M, Christen B, Aßenmacher M, Hainzl O, Zimmermann F, Fischer R, Koppenburg V, Chibout S-D, Wright TM. et al. T-cell assays confirm immunogenicity of tungsten-induced erythropoietin aggregates associated with pure red cell aplasia. Blood Adv. 2017;1(6):367–379. doi:10.1182/bloodadvances.2016001842.
  • De Groot AS, Goldberg M, Moise L, Martin W. Evolutionary deimmunization: an ancillary mechanism for self-tolerance? Cell Immunol. 2006;244(2):148–153. doi:10.1016/j.cellimm.2007.02.006.
  • Bone R, Fennell BJ, Tam A, Sheldon R, Nocka K, Varghese S, Chang CS, Hawerkamp HC, Yeow A, Saunders SP. et al. Discovery and multi-parametric optimization of a high-affinity antibody against interleukin-25 with neutralizing activity in a mouse model of skin inflammation. Antib Ther. 2022;5(4):258–67. doi:10.1093/abt/tbac022.
  • Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation–updated consensus and review 2020. Front Immunol. 2020;11:11. doi:10.3389/fimmu.2020.01301.
  • De Groot AS, Moise L, Liu R, Gutierrez AH, Terry F, Koita OA, Ross TM, Martin W. Cross-conservation of T-cell epitopes. Hum Vaccin Immunother. 2014;10(2):256–62. doi:10.4161/hv.28135.
  • Free epitope database and prediction resource. Accessed March 5, 2024. https://www.iedb.org/
  • Attermann AS, Barra C, Reynisson B, Schultz HS, Leurs U, Lamberth K, Nielsen M. Improved prediction of HLA antigen presentation hotspots: applications for immunogenicity risk assessment of therapeutic proteins. Immunology. 2021;162(2):208–19. doi:10.1111/imm.13274.