1,391
Views
0
CrossRef citations to date
0
Altmetric
Report

Evaluation of the impact of antibody fragments on aggregation of intact molecules via size exclusion chromatography coupled with native mass spectrometry

ORCID Icon, , , , , , & ORCID Icon show all
Article: 2334783 | Received 16 Feb 2023, Accepted 21 Mar 2024, Published online: 27 Mar 2024

References

  • Lu R-M, Hwang Y-C, Liu IJ, Lee C-C, Tsai H-Z, Li H-J, Wu H-C. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1. doi:10.1186/s12929-019-0592-z.
  • Tsumoto K, Isozaki Y, Yagami H, Tomita M. Future perspectives of therapeutic monoclonal antibodies. Immunotherapy. 2019;11(2):119–12. doi:10.2217/imt-2018-0130.
  • Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74. doi:10.1038/nrd3229.
  • Vázquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108(7):1494–508. doi:10.1002/bit.23155.
  • Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D. Aggregation, stability, and formulation of human antibody therapeutics. Adv Protein Chem Struct Biol. 2011;84:41–61.
  • Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody aggregation: insights from sequence and structure. Antibodies (Basel). 2016;5(3):19. doi:10.3390/antib5030019.
  • Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34. doi:10.1002/jps.21566.
  • Wu H, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Competing aggregation pathways for monoclonal antibodies. FEBS Lett. 2014;588(6):936–41. doi:10.1016/j.febslet.2014.01.051.
  • Gupta S, Jiskoot W, Schöneich C, Rathore AS. Oxidation and deamidation of monoclonal antibody products: potential impact on stability, biological activity, and efficacy. J Pharm Sci. 2021;111(4):903–18. doi:10.1016/j.xphs.2021.11.024.
  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B. 2010;114(19):6614–24. doi:10.1021/jp911706q.
  • Dindo M, Conter C, Cellini B. Electrostatic interactions drive native-like aggregation of human alanine: glyoxylate aminostransferase. FEBS J. 2017;284(21):3739–64. doi:10.1111/febs.14269.
  • Shah DD, Zhang J, Maity H, Mallela KMG. Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody. Int J Pharm. 2018;547(1–2):438–49. doi:10.1016/j.ijpharm.2018.06.007.
  • Gaza-Bulseco G, Liu H. Fragmentation of a recombinant monoclonal antibody at various pH. Pharm Res. 2008;25(8):1881–90. doi:10.1007/s11095-008-9606-3.
  • Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32(7):372–80. doi:10.1016/j.tibtech.2014.05.005.
  • Vlasak J, Ionescu R. Fragmentation of monoclonal antibodies. Mabs-austin. 2011;3(3):253–63. doi:10.4161/mabs.3.3.15608.
  • Nelson AD, Hoffmann MM, Parks CA, Dasari S, Schrum AG, Gil D. IgG fab fragments forming bivalent complexes by a conformational mechanism that is reversible by osmolytes. J Biol Chem. 2012;287(51):42936–50. doi:10.1074/jbc.M112.410217.
  • Gil D, Schrum AG. Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments. Adv Biosci Biotechnol. 2013;4(4):73–84. doi:10.4236/abb.2013.44A011.
  • Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the Aggregation Kinetics of a therapeutic antibody fragment. Mol Pharm. 2016;13(2):307–19. doi:10.1021/acs.molpharmaceut.5b00387.
  • Zhang H, Dalby PA. Stability enhancement in a mAb and fab coformulation. Sci Rep. 2020;10(1):21129. doi:10.1038/s41598-020-77989-w.
  • den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28(4):920–33. doi:10.1007/s11095-010-0297-1.
  • Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36. doi:10.1021/ac3032355.
  • Some D, Amartely H, Tsadok A, Lebendiker M. Characterization of proteins by Size-Exclusion Chromatography coupled to Multi-Angle Light Scattering (SEC-MALS). J Vis Exp. 2019;20(148):e59615. doi:10.3791/59615-v.
  • Podzimek S. Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation: powerful tools for the characterization of polymers, proteins and nanoparticles. John Wiley & Sons; 2011.
  • Kaszuba M, Connah MT. Protein and nanoparticle characterisation using light scattering techniques. Part Part Syst Charact. 2006;23(2):193–96. doi:10.1002/ppsc.200601030.
  • Tamara S, den Boer MA, Heck AJR. High-resolution native Mass spectrometry. Chem Rev. 2022;122(8):7269–326. doi:10.1021/acs.chemrev.1c00212.
  • den Boer MA, Lai S-H, Xue X, van Kampen MD, Bleijlevens B, Heck AJR. Comparative Analysis of Antibodies and heavily glycosylated macromolecular immune complexes by size-exclusion chromatography multi-angle light scattering, native charge detection mass spectrometry, and mass photometry. Anal Chem. 2022;94(2):892–900. doi:10.1021/acs.analchem.1c03656.
  • Muneeruddin K, Thomas JJ, Salinas PA, Kaltashov IA. Characterization of Small Protein Aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization Mass spectrometry. Anal Chem. 2014;86(21):10692–99. doi:10.1021/ac502590h.
  • Yan Y, Xing T, Wang S, Daly TJ, Li N. Coupling Mixed-Mode Size Exclusion Chromatography with native Mass spectrometry for sensitive detection and quantitation of homodimer impurities in Bispecific IgG. Anal Chem. 2019;91(17):11417–24. doi:10.1021/acs.analchem.9b02793.
  • Jones J, Pack L, Hunter JH, Valliere-Douglass JF. Native size-exclusion chromatography-mass spectrometry: suitability for antibody–drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. Mabs-austin. 2020;12(1):1682895. doi:10.1080/19420862.2019.1682895.
  • Deslignière E, Ehkirch A, Botzanowski T, Beck A, Hernandez-Alba O, Cianférani S. Toward automation of collision-induced unfolding experiments through online size exclusion chromatography coupled to native Mass spectrometry. Anal Chem. 2020;92(19):12900–08. doi:10.1021/acs.analchem.0c01426.
  • Deslignière E, Ley M, Bourguet M, Ehkirch A, Botzanowski T, Erb S, Hernandez-Alba O, Cianférani S. Pushing the limits of native MS: online SEC-native MS for structural biology applications. Int J Mass Spectrom. 2021;461:116502. doi:10.1016/j.ijms.2020.116502.
  • Ren C, Bailey AO, VanderPorten E, Oh A, Phung W, Mulvihill MM, Harris SF, Liu Y, Han G, Sandoval W. et al. Quantitative determination of protein–ligand affinity by size exclusion chromatography directly coupled to high-resolution native Mass spectrometry. Anal Chem. 2019;91(1):903–11. doi:10.1021/acs.analchem.8b03829.
  • Hernandez-Alba O, Ehkirch A, Beck A, Cianférani S. Analysis of ADCs by native Mass spectrometry. In: Tumey L. editor Antibody-drug conjugates: methods and protocols. New York, NY: Springer US; 2020. pp. 197–211.
  • Deslignière E, Ehkirch A, Duivelshof BL, Toftevall H, Sjögren J, Guillarme D, D’Atri V, Beck A, Hernandez-Alba O, Cianférani S. et al. State-of-the-art native Mass spectrometry and ion mobility methods to monitor homogeneous site-specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals. 2021;14(6):498. doi:10.3390/ph14060498.
  • Xu C-F, Xu J, Sosic Z, Yeung B. Aggregate and fragment analysis in Therapeutic Monoclonal Antibodies Using On-Line Size-Exclusion Chromatography with native Mass spectrometry. LCGC Suppl. 2020;18:18–22, 4.
  • Haberger M, Leiss M, Heidenreich A-K, Pester O, Hafenmair G, Hook M, Bonnington L, Wegele H, Haindl M, Reusch D. et al. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. Mabs-austin. 2016;8(2):331–39. doi:10.1080/19420862.2015.1122150.
  • McKay AR, Ruotolo BT, Ilag LL, Robinson CV. Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J Am Chem Soc. 2006;128(35):11433–42. doi:10.1021/ja061468q.
  • Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26. doi:10.1002/jps.20727.
  • Zheng K, Bantog C, Bayer R. The impact of glycosylation on monoclonal antibody conformation and stability. Mabs-austin. 2011;3(6):568–76. doi:10.4161/mabs.3.6.17922.
  • Kayser V, Chennamsetty N, Voynov V, Forrer K, Helk B, Trout BL. Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J. 2011;6(1):38–44. doi:10.1002/biot.201000091.
  • Zhou Q, Qiu H. The mechanistic impact of N-Glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J Pharm Sci. 2019;108(4):1366–77. doi:10.1016/j.xphs.2018.11.029.
  • Wada R, Matsui M, Kawasaki N. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. Mabs-austin. 2019;11(2):350–72. doi:10.1080/19420862.2018.1551044.