1,778
Views
0
CrossRef citations to date
0
Altmetric
Report

Reducing neonatal Fc receptor binding enhances clearance and brain-to-blood ratio of TfR-delivered bispecific amyloid-β antibody

, , , ORCID Icon & ORCID Icon
Article: 2339337 | Received 23 Dec 2023, Accepted 02 Apr 2024, Published online: 18 Apr 2024

References

  • FDA. FDA grants accelerated approval for Alzheimer’s disease treatment. 2023 [accessed 2023 Jan 6 https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment.
  • Englund H, Sehlin D, Johansson A-S, Nilsson LNG, Gellerfors P, Paulie S, Lannfelt L, Pettersson FE. Sensitive ELISA detection of amyloid-β protofibrils in biological samples. J Neurochem. 2007;103(1):334–11. doi:10.1111/j.1471-4159.2007.04759.x.
  • van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S. et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. doi:10.1056/NEJMoa2212948.
  • Cavazzoni P. (FDA C. for D. E. and R. FDA’s decision to approve new treatment for Alzheimer’s disease. Fda’s decision to approve new treatment for Alzheimer’s disease 2021. https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease.
  • Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–56. doi:10.1038/nature19323.
  • Gustavsson T, Metzendorf NG, Wik E, Roshanbin S, Julku U, Chourlia A, Nilsson P, Andersson KG, Laudon H, Hultqvist G. et al. Long-term effects of immunotherapy with a brain penetrating Aβ antibody in a mouse model of Alzheimer’s disease. Alzheimers Res Ther. 2023;15(1):90. doi:10.1186/s13195-023-01236-3.
  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang G-F, Estrada S. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19. doi:10.1002/ana.20009.
  • Schilling LP, Zimmer ER, Shin M, Leuzy A, Pascoal TA, Benedet AL, Borelli WV, Palmini A, Gauthier S, Rosa-Neto P. Imaging Alzheimer’s disease pathophysiology with PET. Dementia e Neuropsychologia. 2016;10(2):79–90. Preprint at. doi:10.1590/S1980-5764-2016DN1002003.
  • Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology. 2006;66(1_suppl_1):S74–78. doi:10.1212/01.wnl.0000192103.24796.42.
  • Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80. doi:10.1101/gad.1047403.
  • Sehlin D, Syvänen S. Engineered antibodies: new possibilities for brain PET? Eur J Nucl Med Mol Imaging. 2019;11(13):2848–58. doi:10.1007/s00259-019-04426-0.
  • Lord A, Gumucio A, Englund H, Sehlin D, Sundquist VS, Söderberg L, Möller C, Gellerfors P, Lannfelt L, Pettersson FE. et al. An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2009;36(3):425–34. doi:10.1016/j.nbd.2009.08.007.
  • Hultqvist G, Syvänen S, Fang XT, Lannfelt L, Sehlin D. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 2017;7(2):308–18. doi:10.7150/thno.17155.
  • Sehlin D, Fang XT, Cato L, Antoni G, Lannfelt L, Syvänen S. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat Commun. 2016;7(1):1–11. doi:10.1038/ncomms10759.
  • Yu YJ, Atwal JK, Zhang Y, Tong RK, Wildsmith KR, Tan C, Bien-Ly N, Hersom M, Maloney JA, Meilandt WJ. et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med. 2014;6(261). doi:10.1126/scitranslmed.3009835.
  • Rofo F. Meier, SR, Metzendorf, NG, Morrison, JI, Petrovic A, Syvänen S, Sehlin D, Hultqvist G. A brain-targeting bispecific-multivalent antibody clears soluble amyloid-beta aggregates in Alzheimer’s Disease Mice. Neurotherapeutics. 2022;19:1588–602. doi:10.1007/s13311-022-01283-y.
  • Rofo F, Ugur Yilmaz C, Metzendorf N, Gustavsson T, Beretta C, Erlandsson A, Sehlin D, Syvänen S, Nilsson P, Hultqvist G. et al. Enhanced neprilysin-mediated degradation of hippocampal Aβ42 with a somatostatin peptide that enters the brain. Theranostics. 2020;11(2):789–804. doi:10.7150/thno.50263.
  • Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12(545):eaay1359. doi:10.1126/scitranslmed.aay1359.
  • Boado RJ, Zhang Y, Wang Y, Pardridge WM. Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood–brain barrier delivery in the mouse. Biotechnol Bioeng. 2009;102(4):1251–58. doi:10.1002/bit.22135.
  • Sehlin D, Fang XT, Meier SR, Jansson M, Syvänen S. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-β. Sci Rep. 2017;7(1):1–9. doi:10.1038/s41598-017-17358-2.
  • Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke J, Lau W, Tissot A. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60. doi:10.1016/j.neuron.2013.10.061.
  • Morrison JI, Metzendorf NG, Rofo F, Petrovic A, Hultqvist G. A single-chain fragment constant design enables easy production of a monovalent blood–brain barrier transporter and provides an improved brain uptake at elevated doses. J Neurochem. 2023;165(3):413–25. doi:10.1111/JNC.15768.
  • Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84). doi:10.1126/scitranslmed.3002230.
  • Montoyo HP, Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES. Conditional deletion of the MHC class l-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106(8):2788–93. doi:10.1073/pnas.0810796106.
  • Challa DK, Wang X, Montoyo HP, Velmurugan R, Ober RJ, Ward ES. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis. Mabs-austin. 2019;11(5):848–60. doi:10.1080/19420862.2019.1602459.
  • Cooper PR, Ciambrone GJ, Kliwinski CM, Maze E, Johnson L, Li Q, Feng Y, Hornby PJ. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 2013;1534:13–21. doi:10.1016/j.brainres.2013.08.035.
  • Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood–brain barrier. J Neurochem. 2002;81(1):203–06. doi:10.1046/j.1471-4159.2002.00840.x.
  • Garg A, Balthasar JP. Investigation of the influence of FcRn on the distribution of IgG to the brain. Aaps J. 2009;11(3):553–57. doi:10.1208/s12248-009-9129-9.
  • Finke JM, Banks WA, Steinitz M. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer’s disease immunotherapy. Hum Antibodies. 2017;25(3–4):131–46. doi:10.3233/HAB-160306.
  • Zhang Y, Pardridge WM. Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. J Neuroimmunol. 2001;114(1–2):168–72. doi:10.1016/S0165-5728(01)00242-9.
  • Nazarova L, Rafidi H, Mandikian D, Ferl GZ, Koerber JT, Davies CW, Ulufatu S, Ho J, Lau J, Yu S-F. et al. Effect of modulating FcRn binding on direct and pretargeted tumor uptake of full-length antibodies. Mol Cancer Ther. 2020;19(4):1052–58. doi:10.1158/1535-7163.MCT-19-1015.
  • Swiercz R, Chiguru S, Tahmasbi A, Ramezani SM, Hao G, Challa DK, Lewis MA, Kulkarni PV, Sun X, Ober RJ. et al. Use of Fc-engineered antibodies as clearing agents to increase contrast during PET. J Nucl Med. 2014;55(7):1204–07. doi:10.2967/jnumed.113.136481.
  • Vanoli F, Mantegazza R. Antibody therapies in autoimmune neuromuscular junction disorders: Approach to myasthenic crisis and chronic management. Neurotherapeutics. 2022;19(3):897–910. doi:10.1007/s13311-022-01181-3.
  • Vilhelmsson Timmermand O, Örbom A, Altai M, Zedan W, Holmqvist B, Safi M, Tran TA, Strand S-E, Strand J. A conjugation strategy to modulate antigen binding and FcRn interaction leads to improved tumor targeting and radioimmunotherapy efficacy with an antibody targeting prostate-specific antigen. Cancers Basel. 2021;13(14):3469. doi:10.3390/cancers13143469.
  • Rudnik-Jansen I, Howard KA. FcRn expression in cancer: Mechanistic basis and therapeutic opportunities. J Control Release. 2021;337:248–57. doi:10.1016/j.jconrel.2021.07.007.
  • Saunders KO. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol. 2019;10:1296. doi:10.3389/fimmu.2019.01296.
  • Greenwood C, Hunter WM, Glover JS, Marsh, CA. The preparation of 131I-Labelled human growth hormone of high specific radioactivity. J Chem Soc. 1963;227(1):114–123. doi:10.1042/bj0890114.
  • Miles LA, Crespi GAN, Doughty L, Parker MW. Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Rep. 2013;3(1). doi:10.1038/srep01302.
  • Kissel K, Hamm S, Schulz M, Vecchi A, Garlanda C, Engelhardt B. Immunohistochemical localization of the murine transferrin receptor (TfR) on blood–tissue barriers using a novel anti-TfR monoclonal antibody. Histochem Cell Biol. 1998;110(1):63–72. doi:10.1007/s004180050266.
  • Robin B, Games-Thiel, KD, Niijar, TS, Zago W, Mundigl O, Niewoehner J, Tiefenthaler G, inventors; Prothena Biosciences Ltd, Hoffmann La Roche Inc, assignee. Blood-brain barrier shuttles containing antibodies recognizing alpha-synuclein. 2017.
  • Lo M, Kim HS, Tong RK, Bainbridge TW, Vernes J-M, Zhang Y, Lin YL, Chung S, Dennis MS, Zuchero YJY. et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J Biol Chem. 2017;292(9):3900–08. doi:10.1074/jbc.M116.767749.
  • Bonvicini G, Bagawath Singh S, Nygren P, Xiong M, Syvänen S, Sehlin D, Falk R, Andersson KG. Comparing in vitro affinity measurements of antibodies to TfR1: Surface plasmon resonance versus on-cell affinity. Anal Biochem. 2023;686:115406. doi:10.1016/j.ab.2023.115406.
  • Syvänen S, Hultqvist G, Gustavsson T, Gumucio A, Laudon H, Söderberg L, Ingelsson M, Lannfelt L, Sehlin D. Efficient clearance of Aβ protofibrils in AβPP-transgenic mice treated with a brain-penetrating bifunctional antibody. Alzheimers Res Ther. 2018;10(1). doi:10.1186/s13195-018-0377-8.
  • Gustavsson T, Syvänen S, O’callaghan P, Sehlin D. SPECT imaging of distribution and retention of a brain-penetrating bispecific amyloid-β antibody in a mouse model of Alzheimer’s disease. Transl Neurodegener. 2020;9(1):1–11. doi:10.1186/s40035-020-00214-1.
  • Rees AV. JCR pharmaceuticals announces approval of IZCARGOⓇ (Pabinafusp Alfa) for Treatment of MPS II (Hunter Syndrome) in Japan. 2021. https://www.businesswire.com/news/home/20210323005577/en/JCR-Pharmaceuticals-Announces-Approval-of-IZCARGOⓇ-Pabinafusp-Alfa-for-Treatment-of-MPS-II-Hunter-Syndrome-in-Japan.
  • Tien J, Leonoudakis D, Petrova R, Trinh V, Taura T, Sengupta D, Jo L, Sho A, Yun Y, Doan E. et al. Modifying antibody-FcRn interactions to increase the transport of antibodies through the blood-brain barrier. Mabs-austin. 2023;15(1):1–12. doi:10.1080/19420862.2023.2229098.
  • Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks M-J, Abbott NJ, Meyerand ME, Sorokin L, Stanimirovic DB. et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. Journal Of Physiol J. 2018;596(3):445–75. doi:10.1113/JP275105.
  • Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13(12):1551–59. doi:10.1093/intimm/13.12.1551.
  • Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC. Single app knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–63. doi:10.1038/nn.3697.
  • Meier SR, Syvänen S, Hultqvist G, Fang XT, Roshanbin S, Lannfelt L, Neumann U, Sehlin D. Antibody-based in vivo PET imaging detects amyloid-β reduction in Alzheimer transgenic mice after BACE-1 inhibition. J Nucl Med. 2018;59(12):1885–91. doi:10.2967/jnumed.118.213140.
  • Meier SR, Sehlin D, Roshanbin S, Falk VL, Saito T, Saido TC, Neumann U, Rokka J, Eriksson J, Syvänen S. et al. 11 C-PiB and 124 I-Antibody PET provide differing estimates of brain amyloid-β after therapeutic intervention. J Nucl Med. 2022;63(2):302–09. doi:10.2967/jnumed.121.262083.
  • Faresjö R, Bonvicini G, Fang XT, Aguilar X, Sehlin D, Syvänen S. Brain pharmacokinetics of two BBB penetrating bispecific antibodies of different size. Fluids Barriers CNS. 2021;18(1):26. doi:10.1186/s12987-021-00257-0.
  • Lopes van den Broek S, Shalgunov V, García Vázquez R, Beschorner N, Bidesi NSR, Nedergaard M, Knudsen GM, Sehlin D, Syvänen S, Herth MM. et al. Pretargeted imaging beyond the blood–brain barrier–Utopia or Feasible? Pharmaceuticals (Basel). 2022;15(10):1191. doi:10.3390/ph15101191.
  • Schlein E, Syvänen S, Rokka J, Gustavsson T, Rossin R, Robillard M, Eriksson J, Sehlin D. Functionalization of radiolabeled antibodies to enhance peripheral clearance for high contrast brain imaging. Mol Pharm. 2022;19(11):4111–22. doi:10.1021/acs.molpharmaceut.2c00536.
  • Wuensche TE, Stergiou N, Mes I, Verlaan M, Schreurs M, Kooijman EJM, Janssen B, Windhorst AD, Jensen A, Asuni AA. et al. Advancing 89Zr-immuno-PET in neuroscience with a bispecific anti-amyloid-beta monoclonal antibody – the choice of chelator is essential. Theranostics. 2022;12(16):7067–79. doi:10.7150/thno.73509.