4,084
Views
0
CrossRef citations to date
0
Altmetric
Review

Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions

Article: 2341443 | Received 22 Sep 2023, Accepted 05 Apr 2024, Published online: 26 Apr 2024

References

  • Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–17. doi:10.1038/s41573-019-0028-1.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, Bendahman N, Hammers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–48. doi:10.1038/363446a0.
  • Barelle C, Porter A. Vnars: an ancient and unique repertoire of molecules that deliver small, soluble, stable and high affinity binders of proteins. Antibod. 2015;4(3):240–58. doi:10.3390/antib4030240.
  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JARG, Hamers R. Sequence and structure of V H domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng Des Sel. 1994;7(9):1129–35. doi:10.1093/protein/7.9.1129.
  • Spinelli S, Frenken L, Bourgeois D, De Ron L, Bos W, Verrips T, Anguille C, Cambillau C, Tegonil M. The crystal structure of a llama heavy chain variable domain. Nat Struct Mol Biol. 1996;3(9):752–57. doi:10.1038/nsb0996-752.
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97. doi:10.1146/annurev-biochem-063011-092449.
  • Li X, Duan X, Yang K, Zhang W, Zhang C, Fu L, Ren Z, Wang C, Wu J, Lu R. et al. Comparative analysis of immune repertoires between bactrian camel’s conventional and heavy-chain antibodies. PloS One. 2016;11(9):e0161801. doi:10.1371/journal.pone.0161801.
  • Tu Z, Huang X, Fu J, Hu N, Zheng W, Li Y, Zhang Y. Landscape of variable domain of heavy‐chain‐only antibody repertoire from alpaca. Immunology. 2020;161(1):53–65. doi:10.1111/imm.13224.
  • Olsen TH, Boyles F, Deane CM. Observed antibody space: a diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci. 2022;31(1):141–46. doi:10.1002/pro.4205.
  • Gordon GL, Capel HL, Guloglu B, Richardson E, Stafford RL, Deane CM. A comparison of the binding sites of antibodies and single-domain antibodies. Front Immunol. 2023;14:1231623. doi:10.3389/fimmu.2023.1231623.
  • Vattekatte AM, Shinada NK, Narwani TJ, Noël F, Bertrand O, Meyniel J-P, Malpertuy A, Gelly J-C, Cadet F, de Brevern AG. Discrete analysis of camelid variable domains: sequences, structures, and in-silico structure prediction. PeerJ. 2020;8:e8408. doi:10.7717/peerj.8408.
  • Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy‐chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen‐binding repertoire. Embo J. 2000;19(5):921–30. doi:10.1093/emboj/19.5.921.
  • Mendoza MN, Jian M, King MT, Brooks CL. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the listeria virulence factor InlB. Protein Sci. 2020;29(4):990–1003. doi:10.1002/pro.3831.
  • Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, Bosch L, Vrieze SD, Serruys B, Ulrichts H, Vandevelde W. et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci U S A. 2010;107(47):20565–70. doi:10.1073/pnas.1012865107.
  • Low S, Wu H, Jerath K, Tibolla A, Fogal B, Conrad R, Webb D, MacDougall M, Kerr S, Berger V. et al. VHH antibody targeting the chemokine receptor CX3CR1 inhibits progression of atherosclerosis. Mabs-austin. 2020;12(1):1709322. doi:10.1080/19420862.2019.1709322.
  • Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature. 2013;502(7472):575–79. doi:10.1038/nature12572.
  • Kabat EA, Wu TT, Bilofsky H. Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J Biol Chem. 1977;252(19):6609–16. doi:10.1016/S0021-9258(17)39891-5.
  • Soler MA, Medagli B, Wang J, Oloketuyi S, Bajc G, Huang H, Fortuna S, de Marco A. Effect of humanizing mutations on the stability of the llama single-domain variable region. Biomolecules. 2021;11(2):163. doi:10.3390/biom11020163.
  • Desmyter A, Transue TR, Gharoudi MA, Thi MD, Poortmans F, Hamers R, Muyldermans S, Wyns L. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nature Struct Molecul Biol. 1997;3(9):803–11. doi:10.1038/nsb0996-803.
  • Bond CJ, Marsters JC, Sidhu SS. Contributions of CDR3 to V H H domain stability and the design of monobody scaffolds for naive antibody libraries. J Mol Biol. 2003;332(3):643–55. doi:10.1016/S0022-2836(03)00967-7.
  • Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem. 2008;283(6):3639–54. doi:10.1074/jbc.M708536200.
  • Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem. 2015;290(19):11905–17. doi:10.1074/jbc.M114.614842.
  • Riechmann L, Muyldermans S. Single domain antibodies: comparison of camel VH and camelised human VH domains. J Immunol Methods. 1999;231(1–2):25–38. doi:10.1016/S0022-1759(99)00138-6.
  • Tanha J, Nguyen T-D, Ng A, Ryan S, Ni F, MacKenzie R. Improving solubility and refolding efficiency of human VHs by a novel mutational approach. Protein Eng Des Sel. 2006;19(11):503–09. doi:10.1093/protein/gzl037.
  • van der Linden RHJ, Frenken LGJ, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1999;1431(1):37–46. doi:10.1016/S0167-4838(99)00030-8.
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Molina-Abad E, Moreno E. NbThermo: a new thermostability database for nanobodies. Database. 2023;2023:baad021. doi:10.1093/database/baad021.
  • Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid V HH domains compared to those of human V H 3 domains. Biochem. 2002;41(11):3628–36. doi:10.1021/bi011239a.
  • Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem. 2006;78(13):4501–08. doi:10.1021/ac058044j.
  • Kunz P, Zinner K, Mücke N, Bartoschik T, Muyldermans S, Hoheisel JD. The structural basis of nanobody unfolding reversibility and thermoresistance. Sci Rep. 2018;8(1):7934. doi:10.1038/s41598-018-26338-z.
  • Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L. et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife. 2018;7:e34317. doi:10.7554/eLife.34317.
  • Moreno E, Valdés-Tresanco MS, Molina-Zapata A, Sánchez-Ramos O. Structure-based design and construction of a synthetic phage display nanobody library. BMC Res Notes. 2022;15(1):124. doi:10.1186/s13104-022-06001-7.
  • Murakami T, Kumachi S, Matsunaga Y, Sato M, Wakabayashi-Nakao K, Masaki H, Yonehara R, Motohashi M, Nemoto N, Tsuchiya M. Construction of a humanized artificial VHH library reproducing structural features of camelid VHHs for therapeutics. Antibod. 2022;11(1):10. doi:10.3390/antib11010010.
  • Kinoshita S, Nakakido M, Mori C, Kuroda D, Caaveiro JMM, Tsumoto K. Molecular basis for thermal stability and affinity in a VHH: contribution of the framework region and its influence in the conformation of the CDR3. Protein Sci. 2022;31(11):e4450. doi:10.1002/pro.4450.
  • Klarenbeek A, Mazouari KE, Desmyter A, Blanchetot C, Hultberg A, de Jonge JN, Roovers RC, Cambillau C, Spinelli S, Del-Favero J. et al. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. Mabs-austin. 2015;7(4):693–706. doi:10.1080/19420862.2015.1046648.
  • Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, Baetselier PD, Muyldermans S, Revets H. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004;64(8):2853–57. doi:10.1158/0008-5472.CAN-03-3935.
  • Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, de Wiele CV, Staelens L. et al. Formatted anti–tumor necrosis factor α VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis & Rheumatism. 2006;54(6):1856–66. doi:10.1002/art.21827.
  • Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 2009;284(5):3273–84. doi:10.1074/jbc.M806889200.
  • Gorovits B, Clements-Egan A, Birchler M, Liang M, Myler H, Peng K, Purushothama S, Rajadhyaksha M, Salazar-Fontana L, Sung C. et al. Pre-existing antibody: biotherapeutic modality-based review. Aaps J. 2016;18(2):311–20. doi:10.1208/s12248-016-9878-1.
  • van Schie KA, Wolbink G-J, Rispens T. Cross-reactive and pre-existing antibodies to therapeutic antibodies—effects on treatment and immunogenicity. Mabs-austin. 2015;7(4):662–71. doi:10.1080/19420862.2015.1048411.
  • Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J. 2022;289(14):4304–27. doi:10.1111/febs.15809.
  • Lin J, Lee SL, Russell AM, Huang RF, Batt MA, Chang SS, Ferrante A, Verdino P, Henry KA. A structure-based engineering approach to abrogate pre-existing antibody binding to biotherapeutics. PloS One. 2021;16(7):e0254944. doi:10.1371/journal.pone.0254944.
  • Kim HS, Kim I, Zheng L, Vernes J-M, Meng YG, Spiess C. Evading pre-existing anti-hinge antibody binding by hinge engineering. Mabs-austin. 2016;8(8):1536–47. doi:10.1080/19420862.2016.1219006.
  • Cordy JC, Morley PJ, Wright TJ, Birchler MA, Lewis AP, Emmins R, Chen YZ, Powley WM, Bareille PJ, Wilson R. et al. Specificity of human anti‐variable heavy (VH) chain autoantibodies and impact on the design and clinical testing of a VH domain antibody antagonist of tumour necrosis factor‐α receptor 1. Clin Exp Immunol. 2015;182(2):139–48. doi:10.1111/cei.12680.
  • Salema V, Fernández LÁ. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein. Protein Express Purificat. 2013;91(1):42–48. doi:10.1016/j.pep.2013.07.001.
  • Kariuki CK, Magez S. Improving the yield of recalcitrant nanobodies® by simple modifications to the standard protocol. Protein Expr Purif. 2021;185:105906. doi:10.1016/j.pep.2021.105906.
  • Chen SW, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antibody Ther. 2021;4(2):73–88. doi:10.1093/abt/tbab007.
  • Viardot A, Goebeler M-E, Hess G, Neumann S, Pfreundschuh M, Adrian N, Zettl F, Libicher M, Sayehli C, Stieglmaier J. et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood. 2016;127(11):1410–16. doi:10.1182/blood-2015-06-651380.
  • Guo R, Meng X, Wang F, Yu J, Xie Q, Zhao W, Zhu L, Kung HF, Yang Z, Li N. 68Ga-P15-041, a novel bone imaging agent for diagnosis of bone metastases. Front Oncol. 2021;11:766851. doi:10.3389/fonc.2021.766851.
  • Huang L, Gainkam LOT, Caveliers V, Vanhove C, Keyaerts M, Baetselier PD, Bossuyt A, Revets H, Lahoutte T. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol. 2008;10(3):167–75. doi:10.1007/s11307-008-0133-8.
  • Andersen JT, Dalhus B, Viuff D, Ravn BT, Gunnarsen KS, Plumridge A, Bunting K, Antunes F, Williamson R, Athwal S. et al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding*. J Biol Chem. 2014;289(19):13492–502. doi:10.1074/jbc.M114.549832.
  • Muyldermans S. A guide to: generation and design of nanobodies. The FEBS J. 2021;288(7):2084–102. doi:10.1111/febs.15515.
  • Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed antibody space: a resource for data mining next-generation sequencing of antibody repertoires. J Immunol. 2018;201(8):2502–09. doi:10.4049/jimmunol.1800708.
  • Deszyński P, Młokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, Ganesan R, Krawczyk K. INDI—integrated nanobody database for immunoinformatics. Nucleic Acids Res. 2022;50(D1):D1273–81. doi:10.1093/nar/gkab1021.
  • Abanades B, Olsen TH, Raybould MIJ, Aguilar-Sanjuan B, Wong WK, Georges G, Bujotzek A, Deane CM. The patent and literature antibody database (PLAbDab): an evolving reference set of functionally diverse, literature-annotated antibody sequences and structures. Nucleic Acids Res. 2024;52(D1):D545–51. doi:10.1093/nar/gkad1056.
  • Contreras MA, Serrano-Rivero Y, González-Pose A, Salazar-Uribe J, Rubio-Carrasquilla M, Soares-Alves M, Parra NC, Camacho-Casanova F, Sánchez-Ramos O, Moreno E. Design and construction of a synthetic nanobody library: testing its potential with a single selection round strategy. Molecules. 2023;28(9):3708. doi:10.3390/molecules28093708.
  • Shin J-E, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A, Kruse AC, Marks DS. Protein design and variant prediction using autoregressive generative models. Nat Commun. 2021;12(1):2403. doi:10.1038/s41467-021-22732-w.
  • de Bruin RCG, Veluchamy JP, Lougheed SM, Schneiders FL, Lopez-Lastra S, Lameris R, Stam AG, Sebestyen Z, Kuball J, Molthoff CFM. et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. OncoImmunol. 2018;7(1):e1375641. doi:10.1080/2162402X.2017.1375641.
  • Toffoli EC, Sheikhi A, Lameris R, King LA, van Vliet A, Walcheck B, Verheul HMW, Spanholtz J, Tuynman J, de Gruijl TD. et al. Enhancement of NK cell antitumor effector functions using a bispecific single domain antibody targeting CD16 and the epidermal growth factor receptor. Cancers. 2021;13(21):5446. doi:10.3390/cancers13215446.
  • Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Cuesta AM, Blanco-Toribio A, Harwood SL, Villate M, Merino N, Bonet J, Navarro R. et al. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains. Sci Rep. 2016;6(1):28643. doi:10.1038/srep28643.
  • Harwood SL, Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Hernández-Pérez S, Merino N, Bonet J, Navarro R, En Henegouwen PMPVB, Lykkemark S. et al. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunol. 2018;7(1):e1377874. doi:10.1080/2162402X.2017.1377874.
  • Mazor Y, Sachsenmeier KF, Yang C, Hansen A, Filderman J, Mulgrew K, Wu H, Dall’acqua WF. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep-Uk. 2017;7(1):40098. doi:10.1038/srep40098.
  • Dicara DM, Bhakta S, Go MA, Ziai J, Firestein R, Forrest B, Gu C, Leong SR, Lee G, Yu S-F. et al. Development of T-cell engagers selective for cells co-expressing two antigens. Mabs-austin. 2022;14(1):2115213. doi:10.1080/19420862.2022.2115213.
  • Tapia-Galisteo A, Rodríguez ÍS, Aguilar-Sopeña O, Harwood SL, Narbona J, Gutierrez MF, Navarro R, Martín-García L, Corbacho C, Compte M. et al. Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncoimmunol. 2022;11(1):2034355. doi:10.1080/2162402X.2022.2034355.
  • Ridgway JBB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng Des Sel. 1996;9(7):617–21. doi:10.1093/protein/9.7.617.
  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P. An efficient route to human bispecific IgG. Nat Biotechnol. 1998;16(7):677–81. doi:10.1038/nbt0798-677.
  • Liu Z, Leng EC, Gunasekaran K, Pentony M, Shen M, Howard M, Stoops J, Manchulenko K, Razinkov V, Liu H. et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015;290(12):7535–62. doi:10.1074/jbc.M114.620260.
  • Sargentini-Maier ML, Decker PD, Tersteeg C, Canvin J, Callewaert F, Winter HD. Clinical pharmacology of caplacizumab for the treatment of patients with acquired thrombotic thrombocytopenic purpura. Expert Rev Clin Pharmacol. 2019;12(6):537–45. doi:10.1080/17512433.2019.1607293.
  • Takeuchi T, Chino Y, Kawanishi M, Nakanishi M, Watase H, Mano Y, Sato Y, Uchida S, Tanaka Y. Efficacy and pharmacokinetics of ozoralizumab, an anti-TNFα NANOBODY® compound, in patients with rheumatoid arthritis: 52-week results from the OHZORA and NATSUZORA trials. Arthritis Res Ther. 2023;25(1):60. doi:10.1186/s13075-023-03036-4.
  • Ortiz S, McEneny A, Amancha P, Rice K, Scholz J, Rakhade S, Yee M. Safety, tolerability, pharmacokinetics, pharmacodynamics and immunogenicity of subcutaneous and intravenous ALXN1720 in healthy volunteers: a phase 1, randomized, double-blind, placebocontrolled, single and multiple ascending dose study (P1-5.016). Neurology. 2023;100(17_supplement_2):100. doi:10.1212/WNL.0000000000203482.
  • Svecova D, Lubell MW, Casset-Semanaz F, Mackenzie H, Grenningloh R, Krueger JG. A randomized, double-blind, placebo-controlled phase 1 study of multiple ascending doses of subcutaneous M1095, an anti–interleukin 17A/F nanobody, in moderate-to-severe psoriasis. J Am Acad Dermatol. 2019;81(1):196–203. doi:10.1016/j.jaad.2019.03.056.
  • Hofmann I, Baum A, Hofmann MH, Trapani F, Reichel-Voda C, Ehrensperger D, Aichinger M, Ebner F, Budano N, Schweifer N. et al. Pharmacodynamic and antitumor activity of BI 836880, a dual vascular endothelial growth factor and angiopoietin 2 inhibitor, alone and combined with programmed cell death protein-1 inhibition. J Pharmacol Exp Ther. 2023;384(3):331–42. doi:10.1124/jpet.122.001255.
  • Tourneau CL, Becker H, Claus R, Elez E, Ricci F, Fritsch R, Silber Y, Hennequin A, Tabernero J, Jayadeva G. et al. Two phase I studies of BI 836880, a vascular endothelial growth factor/angiopoietin-2 inhibitor, administered once every 3 weeks or once weekly in patients with advanced solid tumors. ESMO Open. 2022;7(5):100576. doi:10.1016/j.esmoop.2022.100576.
  • Bradley ME, Dombrecht B, Manini J, Willis J, Vlerick D, Taeye SD, den Heede HK, Roobrouck A, Grot E, Kent TC. et al. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action. Mol Pharmacol. 2015;87(2):251–62. doi:10.1124/mol.114.094821.
  • Ma Y, Xue J, Zhao Y, Zhang Y, Huang Y, Yang Y, Fang W, Guo Y, Li Q, Ge X. et al. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. J Immunother Cancer. 2023;11(6):e006654. doi:10.1136/jitc-2022-006654.
  • Johnson ML, Dy GK, Mamdani H, Dowlati A, Schoenfeld AJ, Pacheco JM, Sanborn RE, Menon SP, Santiago L, Yaron Y. et al. Interim results of an ongoing phase 1/2a study of HPN328, a tri-specific, half-life extended, DLL3-targeting, T-cell engager, in patients with small cell lung cancer and other neuroendocrine cancers. J Clin Oncol. 2022;40(16_suppl):8566–8566. doi:10.1200/JCO.2022.40.16_suppl.8566.
  • Molloy ME, Austin RJ, Lemon BD, Aaron WH, Ganti V, Jones A, Jones SD, Strobel KL, Patnaik P, Sexton K. et al. Preclinical characterization of HPN536, a trispecific, T-Cell–activating protein construct for the treatment of mesothelin-expressing solid tumors. Clin Cancer Res. 2021;27(5):1452–62. doi:10.1158/1078-0432.CCR-20-3392.
  • Hsieh EM, Rouce RH. Chimeric antigen receptor T cells for mature B-cell lymphoma and Burkitt lymphoma. Hematology. 2020;2020(1):487–93. doi:10.1182/hematology.2020000133.
  • Lameris R, Shahine A, Pellicci DG, Uldrich AP, Gras S, Nours JL, Groen RWJ, Vree J, Reddiex SJJ, Quiñones-Parra SM. et al. A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. Nat Cancer. 2020;1(11):1054–65. doi:10.1038/s43018-020-00111-6.
  • Kater AP, Donk NWCJVD, Rodríguez-Otero P, Mateos MV, Bosch F, Tucci A, Ghia P, Adang AEP, Parren PWHI, Tuinhof I. et al. Lava-051, a novel bispecific gamma-Delta T-cell engager (Gammabody), in relapsed/refractory MM and CLL: pharmacodynamic and early clinical data. Blood. 2022;140(Supplement 1):4608–09. doi:10.1182/blood-2022-166851.
  • Mehra N, Robbrecht D, Voortman J, Parren PW, Macia S, Veeneman J, Umarale S, Winograd B, Vliet HJ, van der Wise DR. Early dose escalation of LAVA-1207, a novel bispecific gamma-delta T-cell engager (gammabody), in patients with metastatic castration-resistant prostate cancer (mCRPC). J Col. 2023;41(6_suppl):153–153. doi:10.1200/JCO.2023.41.6_suppl.153.
  • Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, Zhang B, Lenvik AJ, Panoskaltsis-Mortari A, Verneris MR. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22(14):3440–50. doi:10.1158/1078-0432.CCR-15-2710.
  • Felices M, Lenvik TR, Kodal B, Lenvik AJ, Hinderlie P, Bendzick LE, Schirm DK, Kaminski MF, McElmurry RT, Geller MA. et al. Potent cytolytic activity and specific IL15 delivery in a second-generation trispecific killer engager. Cancer Immunol Res. 2020;8(9):1139–49. doi:10.1158/2326-6066.CIR-19-0837.
  • Siramshetty VB, Grishagin I, Nguyễn Ð-T, Peryea T, Skovpen Y, Stroganov O, Katzel D, Sheils T, Jadhav A, Mathé EA. et al. NCATS inxight drugs: a comprehensive and curated portal for translational research. Nucleic Acids Res. 2022;50(D1):D1307–16. doi:10.1093/nar/gkab918.
  • Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun Biol. 2023;6:575. doi:10.1038/s42003-023-04927-7.
  • Zou H, Yuan R, Lai B, Dou Y, Wei L, Xu J. Antibody humanization via protein language model and neighbor retrieval. bioRxiv. 2023. doi:10.1101/2023.09.04.556278.
  • Ruffolo JA, Chu L-S, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun. 2023;14(1):2389. doi:10.1038/s41467-023-38063-x.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–89. doi:10.1038/s41586-021-03819-2.
  • Abanades B, Georges G, Bujotzek A, Deane CM, Xu J. Ablooper: fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics. 2022;38(7):1877–80. doi:10.1093/bioinformatics/btac016.
  • Cohen T, Halfon M, Schneidman-Duhovny D. NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning. Front Immunol. 2022;13:958584. doi:10.3389/fimmu.2022.958584.
  • Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A. et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–10. doi:10.1038/s41586-019-1923-7.
  • Schneider C, Raybould MIJ, Deane CM. SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Research. 2022;50(D1):D1368–72. doi:10.1093/nar/gkab1050.
  • Sankar K, Krystek SR, Carl SM, Day T, Maier JKX. AggScore: prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Struct, Funct Bioinform. 2018;86(11):1147–56. doi:10.1002/prot.25594.
  • Myung Y, Pires DEV, Ascher DB, Martelli PL. CSM-AB: graph-based antibody–antigen binding affinity prediction and docking scoring function. Bioinformatics. 2022;38(4):1141–43. doi:10.1093/bioinformatics/btab762.
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Jiménez-Gutiérrez DE, Moreno E. Structural modeling of nanobodies: a benchmark of state-of-the-art artificial intelligence programs. Molecules. 2023;28(10):3991. doi:10.3390/molecules28103991.
  • Huang C, Huang J, Zhu S, Tang T, Chen Y, Qian F. Multivalent nanobodies with rationally optimized linker and valency for intravitreal VEGF neutralization. Chem Eng Sci. 2023;270:118521. doi:10.1016/j.ces.2023.118521.
  • Gaudreault F, Corbeil CR, Sulea T. Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2. Sci Rep. 2023;13(1):1507. doi:10.1038/s41598-023-42090-5.
  • Yin R, Pierce BG. Evaluation of AlphaFold antibody-antigen modeling with implications for improving predictive accuracy. bioRxiv. 2023. doi:10.1101/2023.07.05.547832.
  • Liberis E, Veličković P, Sormanni P, Vendruscolo M, Liò P, Hancock J. Parapred: antibody paratope prediction using convolutional and recurrent neural networks. Bioinformat. 2018;34(17):2944–50. doi:10.1093/bioinformatics/bty305.
  • Jespersen MC, Mahajan S, Peters B, Nielsen M, Marcatili P. Antibody specific B-cell epitope predictions: leveraging information from antibody-antigen protein complexes. Front Immunol. 2019;10:298. doi:10.3389/fimmu.2019.00298.
  • Collatz M, Mock F, Barth E, Hölzer M, Sachse K, Marz M, Lenore C. EpiDope: a deep neural network for linear B-cell epitope prediction. Bioinformat. 2021;37(4):448–55. doi:10.1093/bioinformatics/btaa773.
  • McPartlon M, Xu J. Deep learning for flexible and site-specific protein docking and design. bioRxiv. 2023. doi:10.1101/2023.04.01.535079.
  • Schneider C, Buchanan A, Taddese B, Deane CM, Valencia A. DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformat. 2022;38(2):377–83. doi:10.1093/bioinformatics/btab660.
  • Tam C, Kumar A, Zhang KYJ. NbX: machine learning-guided re-ranking of nanobody–antigen binding poses. Pharmaceut. 2021;14(10):968. doi:10.3390/ph14100968.
  • Hummer AM, Schneider C, Chinery L, Deane CM. Investigating the volume and diversity of data needed for generalizable antibody-antigen ∆∆G prediction. bioRxiv. 2023. doi:10.1101/2023.05.17.541222v1.
  • Hummer AM, Abanades B, Deane CM. Advances in computational structure-based antibody design. Curr Opin Struct Biol. 2022;74:102379. doi:10.1016/j.sbi.2022.102379.
  • Martinelli DD. Generative machine learning for de novo drug discovery: a systematic review. Comput Biol Med. 2022;145:105403. doi:10.1016/j.compbiomed.2022.105403.
  • Shuai RW, Ruffolo JA, Gray JJ. IgLM: infilling language modeling for antibody sequence design. Cell Syst. 2023;14(11):979–89.e4. doi:10.1016/j.cels.2023.10.001.
  • Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, Ahern W, Borst AJ, Ragotte RJ, Milles LF. et al. De Novo design of protein structure and function with RFdiffusion. Nature. 2023;620(7976):1089–100. doi:10.1038/s41586-023-06415-8.
  • Ferruz N, Schmidt S, Höcker B. ProtGPT2 is a deep unsupervised language model for protein design. Nat Commun. 2022;13(1):4348. doi:10.1038/s41467-022-32007-7.
  • Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A. ProGen2: exploring the boundaries of protein language models. Cell Syst. 2023;14(11):968–78.e3. doi:10.1016/j.cels.2023.10.002.
  • Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y. et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv. 2022. doi:10.1101/2022.07.20.500902.
  • Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer C, Steinegger M. et al. ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell. 2022;44(10):7112–27. doi:10.1109/TPAMI.2021.3095381.
  • Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformat. 2015;31(6):926–32. doi:10.1093/bioinformatics/btu739.
  • Ruffolo JA, Gray JJ, Sulam J. Deciphering antibody affinity maturation with language models and weakly supervised learning. arXiv 2021. 2021. doi: 10.1093/2112.07782.
  • Olsen TH, Moal IH, Deane CM, Lengauer T. AbLang: an antibody language model for completing antibody sequences. Bioinf Adv. 2022;2(1):vbac046. doi:10.1093/bioadv/vbac046.
  • Hadsund JT, Satława T, Janusz B, Shan L, Zhou L, Röttger R, Krawczyk K. nanoBERT: a deep learning model for gene agnostic navigation of the nanobody mutational space. bioRxiv. 2024. doi:10.1101/2024.01.31.578143.
  • Luo S, Su Y, Peng X, Wang S, Peng J, Ma J. Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures. bioRxiv. 2022. doi:10.1101/2022.07.10.499510.
  • Hie BL, Shanker VR, Xu D, Bruun TUJ, Weidenbacher PA, Tang S, Wu W, Pak JE, Kim PS. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol. 2024;42(2):275–83. doi:10.1038/s41587-023-01763-2.
  • Bellamy H, Rehim AA, Orhobor OI, King R. Batched Bayesian optimization for drug design in noisy environments. J Chem Inf Model. 2022;62(17):3970–81. doi:10.1021/acs.jcim.2c00602.
  • Seo S, Kwak MW, Kang E, Kim C, Park E, Kang TH, Kim J. Accelerating antibody design with active learning. bioRxiv. 2022. doi:10.1101/2022.09.12.507690.
  • Khan A, Cowen-Rivers AI, Grosnit A, Deik D-G-X, Robert PA, Greiff V, Smorodina E, Rawat P, Akbar R, Dreczkowski K. et al. Toward real-world automated antibody design with combinatorial Bayesian optimization. Cell Rep Methods. 2023;3(1):100374. doi:10.1016/j.crmeth.2022.100374.
  • Li L, Gupta E, Spaeth J, Shing L, Jaimes R, Engelhart E, Lopez R, Caceres RS, Bepler T, Walsh ME. Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries. Nat Commun. 2023;14(1):3454. doi:10.1038/s41467-023-39022-2.
  • Stanton S, Maddox W, Gruver N, Maffettone P, Delaney E, Greenside P, Wilson AG. Accelerating Bayesian optimization for biological sequence design with denoising autoencoders. Int Conf Mach Learn. 2022;20459–20478.
  • Gruver N, Stanton S, Frey NC, Rudner TGJ, Hotzel I, Lafrance-Vanasse J, Rajpal A, Cho K, Wilson AG. Protein design with guided discrete diffusion. 2023. arXiv 2023. doi:10.1093/2305.20009.
  • Sulea T. Humanization of camelid single-domain antibodies. Methods Mol Bio. 2022;2446:299–312.
  • Marks C, Hummer AM, Chin M, Deane CM, Martelli PL. Humanization of antibodies using a machine learning approach on large-scale repertoire data. Bioinformat. 2021;37(22):4041–47. doi:10.1093/bioinformatics/btab434.
  • Prihoda D, Maamary J, Waight A, Juan V, Fayadat-Dilman L, Svozil D, Bitton DA. BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. Mabs-austin. 2022;14(1):2020203. doi:10.1080/19420862.2021.2020203.
  • Tennenhouse A, Khmelnitsky L, Khalaila R, Yeshaya N, Noronha A, Lindzen M, Makowski EK, Zaretsky I, Sirkis YF, Galon-Wolfenson Y. et al. Computational optimization of antibody humanness and stability by systematic energy-based ranking. Nat Biomed Eng. 2023;8(1):30–44. doi:10.1038/s41551-023-01079-1.
  • Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R. Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol. 2005;350(1):112–25. doi:10.1016/j.jmb.2005.04.050.
  • Abderrazek RB, Vincke C, Hmila I, Saerens D, Abidi N, Ayeb ME, Muyldermans S, Bouhaouala-Zahar B. Development of Cys38 knock-out and humanized version of NbAahII10 nanobody with improved neutralization of aahII scorpion toxin. Protein Eng Des Sel. 2011;24(9):727–35. doi:10.1093/protein/gzr037.
  • Ramon A, Saturnino A, Didi K, Greenig M, Sormanni P, Visentin C, Ricagno S, Xu X, Greenig M, Sormanni P. Assessing antibody and nanobody nativeness for hit selection and humanization with AbNatiV. Nat Mach Intell. 2024;6(1):74–91. doi:10.1038/s42256-023-00778-3.