2,160
Views
0
CrossRef citations to date
0
Altmetric
Report

Predicting the clinical subcutaneous absorption rate constant of monoclonal antibodies using only the primary sequence: a machine learning approach

ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & show all
Article: 2352887 | Received 03 Mar 2024, Accepted 03 May 2024, Published online: 14 May 2024

References

  • Swartz M. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50(1–2):3–11. doi:10.1016/S0169-409X(01)00150-8.
  • Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–69. doi:10.1023/A:1015880819328.
  • Gabrielsson J, Weiner D, Weiner D. Pharmacokinetic & pharmacodynamic data analysis: concepts and applications. In: Gabrielsson J, editors. Expanded.; PK/PD data analysis: concepts and applications; Apotekarsocieteten, Swedish Acedemy of Pharmaceutical Sciences. Stockholm: Swedish Pharmaceutical Press; 2006. p. 43.
  • Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86. doi:10.1007/s10928-011-9232-2.
  • Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2012;39(6):711–23. doi:10.1007/s10928-012-9280-2.
  • Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2(8):63. doi:10.1038/psp.2013.41.
  • Li Z, Yu X, Li Y, Verma A, Chang HP, Shah DK. A two-pore physiologically based pharmacokinetic model to predict subcutaneously administered different-size antibody/antibody fragments. Aaps J. 2021;23(3):62. doi:10.1208/s12248-021-00588-8.
  • Hu S, D’Argenio DZ. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling. J Pharmacokinet Pharmacodyn. 2020;47(5):385–409. doi:10.1007/s10928-020-09691-3.
  • Gill KL, Gardner I, Li L, Jamei M. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. Aaps J. 2016;18(1):156–70. doi:10.1208/s12248-015-9819-4.
  • Chemical Computing Group ULC. Molecular operating environment (MOE); 1010 Sherbooke St. West, Suite #910 Montreal, QC, Canada, H3A 2R7; 2022.
  • Datta-Mannan A, Estwick S, Zhou C, Choi H, Douglass NE, Witcher DR, Lu J, Beidler C, Millican R. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. Mabs-austin. 2020;12(1):1770028. doi:10.1080/19420862.2020.1770028.
  • Reddy ST, Berk DA, Jain RK, Swartz MA. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol. 2006;101(4):1162–69. doi:10.1152/japplphysiol.00389.2006.
  • Richter WF, Bhansali SG, Morris ME. Mechanistic determinants of biotherapeutics absorption following SC administration. Aaps J. 2012;14(3):559–70. doi:10.1208/s12248-012-9367-0.
  • Datta-Mannan A. Mechanisms influencing the pharmacokinetics and disposition of monoclonal antibodies and peptides. Drug Metab Dispos. 2019;47(10):1100–10. doi:10.1124/dmd.119.086488.
  • Turner MR, Balu-Iyer SV. Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J Pharm Sci. 2018;107(5):1247–60. doi:10.1016/j.xphs.2018.01.007.
  • Zheng F, Hou P, Corpstein CD, Park K, Li T. Multiscale pharmacokinetic modeling of systemic exposure of subcutaneously injected biotherapeutics. J Controlled Release. 2021;337:407–16. doi:10.1016/j.jconrel.2021.07.043.
  • Wasserman RL. Overview of recombinant human hyaluronidase-facilitated subcutaneous infusion of IgG in primary immunodeficiencies. Immunotherapy. 2014;6(5):553–67. doi:10.2217/imt.14.34.
  • Yang L, Allan J. Pharmapendium. Amsterdam, Netherlands: Elsevier.
  • Kinnunen HM, Mrsny RJ. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J Controlled Release. 2014;182:22–32. doi:10.1016/j.jconrel.2014.03.011.
  • Velliangiri S, Alagumuthukrishnan S, Thankumar Joseph SI. A review of dimensionality reduction techniques for efficient computation. Procedia Comput Sci. 2019;165:104–11. doi:10.1016/j.procs.2020.01.079.
  • Thorsteinson N, Gunn JR, Kelly K, Long W, Labute P. Structure-based charge calculations for predicting isoelectric point, viscosity, clearance, and profiling antibody therapeutics. Mabs-austin. 2021;13(1):1981805. doi:10.1080/19420862.2021.1981805.
  • Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016; p. 785–94. 10.1145/2939672.2939785.
  • Liu Y, Just A. Package Version 0.1.0.; 2020. Shapforxgboost: SHAP plots for “XGBoost”. R.
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
  • Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:5. doi:10.18637/jss.v028.i05.
  • Wickham H. Ggplot2. Cham: Use R!; Springer International Publishing; 2016. doi:10.1007/978-3-319-24277-4.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and Allotypes: from structure to effector functions. Front Immunol. 2014;5. doi:10.3389/fimmu.2014.00520.
  • Tang Y, Cain P, Anguiano V, Shih JJ, Chai Q, Feng Y. Impact of IgG subclass on molecular properties of monoclonal antibodies. Mabs-austin. 2021;13(1):1993768. doi:10.1080/19420862.2021.1993768.
  • Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need. arXiv November 23, 2021. (accessed 2022 07 14) http://arxiv.org/abs/2106.03253.
  • Bhattacharya S, S SRK, Maddikunta PKR, Kaluri R, Singh S, Gadekallu TR, Alazab M, Tariq U. A novel PCA-Firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics. 2020;9(2):219. doi:10.3390/electronics9020219.
  • Nobre J, Neves RF. Combining Principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets. Expert Syst Appl. 2019;125:181–94. doi:10.1016/j.eswa.2019.01.083.
  • Molnar C. Interpretable machine learning: a guide for making black box models explainable. 2nd. Munich, Germany: Christoph Molnar; 2022.
  • Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development. mAbs-austin. 2016;8(2):229–45. doi:10.1080/19420862.2015.1115937.
  • Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar DB. et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. mAbs-austin. 2010;2(6):613–24. doi:10.4161/mabs.2.6.13333.
  • Boswell CA, Tesar DB, Mukhyala K, Theil F-P, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63. doi:10.1021/bc100261d.
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32. doi:10.1016/0022-2836(82)90515-0.
  • Koulakis JP, Rouch J, Huynh N, Wu HH, Dunn JCY, Putterman S. Tumescent injections in subcutaneous pig tissue disperse fluids volumetrically and maintain elevated local concentrations of additives for several hours, suggesting a treatment for drug resistant wounds. Pharm Res. 2020;37(3):51. doi:10.1007/s11095-020-2769-2.
  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4(11):2411–23. doi:10.1002/pro.5560041120.
  • Ying X. An overview of overfitting and its solutions. J Phys Conf Ser. 2019;1168:022022. doi:10.1088/1742-6596/1168/2/022022.
  • Kagan L. Pharmacokinetic modeling of the subcutaneous absorption of therapeutic proteins. Drug Metab Dispos. 2014;42(11):1890–905. doi:10.1124/dmd.114.059121.
  • Lou H, Hageman MJ. Machine learning attempts for predicting human subcutaneous bioavailability of monoclonal antibodies. Pharm Res. 2021;38(3):451–60. doi:10.1007/s11095-021-03022-y.
  • Martin KP, Grimaldi C, Grempler R, Hansel S, Kumar S. Trends in industrialization of biotherapeutics: a survey of product characteristics of 89 antibody-based biotherapeutics. Mabs-austin. 2023;15(1):2191301. doi:10.1080/19420862.2023.2191301.
  • Porter C. Lymphatic transport of proteins after s.C. Injection: implications of animal model selection. Adv Drug Deliv Rev. 2001;50(1–2):157–71. doi:10.1016/S0169-409X(01)00153-3.
  • Thomas VA, Balthasar JP. Understanding inter-individual variability in monoclonal antibody disposition. Antibodies. 2019;8(4):56. doi:10.3390/antib8040056.
  • Gill KL, Machavaram KK, Rose RH, Chetty M. Potential sources of inter-subject variability in monoclonal antibody pharmacokinetics. Clin Pharmacokinet. 2016;55(7):789–805. doi:10.1007/s40262-015-0361-4.
  • Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies: Clin. Pharmacokinet. 2010;49(10):633–59. doi:10.2165/11535960-000000000-00000.
  • Zou P, Wang F, Wang J, Lu Y, Tran D, Seo SK. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Controlled Release. 2021;336:310–21. doi:10.1016/j.jconrel.2021.06.038.
  • Bown HK, Bonn C, Yohe S, Yadav DB, Patapoff TW, Daugherty A, Mrsny RJ. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J Controlled Release. 2018;273:13–20. doi:10.1016/j.jconrel.2018.01.015.