71
Views
0
CrossRef citations to date
0
Altmetric
Articles

Quantum dot-based fluorescence-linked immunosorbent assay for the rapid detection of lomefloxacin in animal-derived foods

, , , , , , , , , & show all
Pages 513-524 | Received 19 Jul 2023, Accepted 01 Oct 2023, Published online: 19 Mar 2024

References

  • Aichun L, Chao L, Le Z, Chaoming T, Feng L, Yun Z. 2018. Rapid determination of quinolones in aquatic products by immune colloidal gold method. Acta Agric Zhejiangensis. 30(2):290–297. doi: 10.3969/j.issn.1004-1524.2018.02.16.
  • Al-Wabli RI. 2017. Lomefloxacin. In: Profiles of drug substances, excipients and related methodology. Chapter 4. Vol. 42:193–240.
  • Alivisatos AP. 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science. 271(5251):933–937. doi: 10.1126/science.271.5251.93.
  • Amiripour F, Ghasemi S, Azizi SN. 2021. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem. 347:129034. doi: 10.1016/j.foodchem.2021.129034.
  • Andriole VT. 1999. The future of the quinolones. Drugs. 58 Suppl 2(Supplement 2):1–5. doi: 10.2165/00003495-199958002-00001.
  • Appelbaum P, Hunter P. 2000. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents. 16(1):5–15. doi: 10.1016/s0924-8579(00)00192-8.
  • Chen L, Hu X, Sun Y, Xing Y, Zhang G. 2022. An ultrasensitive monoclonal antibody-based lateral flow immunoassay for the rapid detection of xylazine in milk. Food Chem. 383:132293. doi: 10.1016/j.foodchem.2022.132293.
  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG. 1997. (CdSe) ZnS core − shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 101(46):9463–9475. doi: 10.1021/jp971091y.
  • Derayea SM, Hassan YF, Hammad MA, Alahmadi YM, Omar MA, Samir E. 2023. Feasible spectrofluorimetric approach for the ultrasensitive determination of lomefloxacin based on synergistic effects of micellization and metal complexation. Spectrochim Acta A Mol Biomol Spectrosc. 292:122399. doi: 10.1016/j.saa.2023.122399.
  • Eljaaly K, Alkhalaf A, Alhifany AA, Alshibani M. 2020. Photosensitivity induced by lomefloxacin versus other fluoroquinolones: a meta-analysis. J Infect Chemother. 26(6):535–539. doi: 10.1016/j.jiac.2020.01.005.
  • Goftman VV, Aubert T, Ginste DV, Van Deun R, Beloglazova NV, Hens Z, De Saeger S, Goryacheva IY. 2016. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection. Biosens Bioelectron. 79:476–481. doi: 10.1016/j.bios.2015.12.079.
  • Guan S, Wu H, Yang L, Wang Z, Wu J. 2020. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. J Sep Sci. 43(19):3775–3784. doi: 10.1002/jssc.202000616.
  • Hines MA, Guyot-Sionnest P. 1996. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 100(2):468–471. doi: 10.1021/jp9530562.
  • Hua J, Jiao Y, Wang M, Yang Y. 2018. Determination of norfloxacin or ciprofloxacin by carbon dots fluorescence enhancement using magnetic nanoparticles as adsorbent. Microchim Acta. 185(2):1–9. doi: 10.1007/s00604-018-2685-x.
  • İsmail Emir A, Ece YK, Sinem R, Sezer A, Özge E. 2021. Validation of two UHPLC-MS/MS methods for fast and reliable determination of quinolone residues in honey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 38(5):807–819. doi: 10.1080/19440049.2021.1881621.
  • Kowalska J, Banach K, Rzepka Z, Rok J, Karkoszka M, Wrześniok D. 2022. Changes in the oxidation-reduction state of human dermal fibroblasts as an effect of lomefloxacin phototoxic action. Cells. 11(12):1971. doi: 10.3390/cells11121971.
  • Kuno M, Lee J-K, Dabbousi BO, Mikulec FV, Bawendi MG. 1997. The band edge luminescence of surface modified CdSe nanocrystallites: probing the luminescing state. J Chem Phys. 106(23):9869–9882. doi: 10.1063/1.473875.
  • Lei X, Xu X, Liu L, Xu L, Wang L, Kuang H, Xu C. 2023. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 16(1):1259–1268. doi: 10.1007/s12274-022-4762-z.
  • Leigh D, Tait S, Walsh B. 1991. Antibacterial activity of lomefloxacin. J Antimicrob Chemother. 27(5):589–598. doi: 10.1093/jac/27.5.589.
  • Li L, Mu Y-C, Liu L, Zhang H-Y, Xu J-H, Yang Z, Qiao L, Song J-L. 2022. Research progress on contamination control of fluoroquinolone antibiotics and drug resistance genes. Biotechnology Bulletin. 38(9):84. doi: 10.13560/j.cnki.biotech.bull.1985.2022-0497.
  • Li Z, Yao K, Li X. 2019. Simultaneous detection of ofloxacin and lomefloxacin in milk by visualized microplate array. Food Measure. 13(4):2637–2643. doi: 10.1007/s11694-019-00184-7.
  • Liu B, Yan H, Qiao F-x, Geng Y. 2011. Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection. J Chromatogr B Analyt Technol Biomed Life Sci. 879 (1):90–94. doi: 10.1016/j.jchromb.2010.11.017.
  • Liu J, Wang B, Huang H, Jian D, Lu Y, Shan Y, Wang S, Liu F. 2021. Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips. Food Chem. 335:127596. doi: 10.1016/j.foodchem.2020.127596.
  • Lungu I-A, Moldovan O-L, Biriș V, Rusu A. 2022. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics. 14(8):1749. doi: 10.3390/pharmaceutics14081749.
  • Moreno-González D, Hamed AM, Gilbert-López B, Gámiz-Gracia L, García-Campaña AM. 2017. Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J Chromatogr A. 1510:100–107. doi: 10.1016/j.chroma.2017.06.055.
  • Mukunzi D, Isanga J, Suryoprabowo S, Liu L, Kuang H. 2017. Rapid and sensitive immunoassays for the detection of lomefloxacin and related drug residues in bovine milk samples. Food Agric Immunol. 28(4):599–611. doi: 10.1080/09540105.2017.1306495.
  • Orachorn N, Bunkoed O. 2019. A nanocomposite fluorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefloxacin detection. Talanta. 203:261–268. doi: 10.1016/j.talanta.2019.05.082.
  • Pages J-M, James CE, Winterhalter M. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 6(12):893–903. doi: 10.1038/nrmicro1994.
  • Regulation C. 2010. No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official J Eur Union. 15:1–72.
  • Schuettenberg A, Piña A, Metrailer M, Peláez-Sánchez RG, Agudelo-Flórez P, Lopez JÁ, Ryle L, Monroy FP, Altin JA, Ladner JT. 2022. Highly multiplexed serology for nonhuman mammals. Microbiol Spectr. 10(5):e02873-02822. doi: 10.1128/spectrum.02873-22.
  • Shi H, Sheng E, Feng L, Zhou L, Hua X, Wang M. 2015. Simultaneous detection of imidacloprid and parathion by the dual-labeled time-resolved fluoroimmunoassay. Environ Sci Pollut Res Int. 22(19):14882–14890. doi: 10.1007/s11356-015-4697-y.
  • Singh VA, Ranjan V, Kapoor M. 1999. Semiconductor quantum dots: theory and phenomenology. Bull Mater Sci. 22(3):563–569. doi: 10.1007/BF02749969.
  • Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. 2009. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 22(4):664–689. doi: 10.1128/CMR.00016-09.
  • Suarez-Pantaleon C, Wichers J, Abad-Somovilla A, Van Amerongen A, Abad-Fuentes A. 2013. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens Bioelectron. 42:170–176. doi: 10.1016/j.bios.2012.11.001.
  • Sun Y, Li Y, Meng X, Qiao B, Hu P, Meng X, Lu S, Ren H, Liu Z, Zhou Y. 2018. Fluorescence-linked immunosorbent assay for detection of phenanthrene and its homolog. Anal Biochem. 547:45–51. doi: 10.1016/j.ab.2018.02.016.
  • Thakare S, Shaikh A, Bodas D, Gajbhiye V. 2022. Application of dendrimer-based nanosensors in immunodiagnosis. Colloids Surf B Biointerfaces. 209(Pt 2):112174. doi: 10.1016/j.colsurfb.2021.112174.
  • Tian C, Ren X, He M, Chen B, Hu B. 2022. Core‐shell magnetic porous organic polymer for magnetic solid‐phase extraction of fluoroquinolone antibiotics in honey samples followed by high‐performance liquid chromatography with fluorescence detection. J Sep Sci. 45(4):874–882. doi: 10.1002/jssc.202100678.
  • Truong HB, Huy BT, Ray SK, Gyawali G, Lee Y-I, Cho J, Hur J. 2022. Magnetic visible-light activated photocatalyst ZnFe2O4/BiVO4/g-C3N4 for decomposition of antibiotic lomefloxacin: photocatalytic mechanism, degradation pathway, and toxicity assessment. Chemosphere. 299:134320. doi: 10.1016/j.chemosphere.2022.134320.
  • Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K. 2014. Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ. 500-501:250–269. doi: 10.1016/j.scitotenv.2014.08.075.
  • Wadworth AN, Goa KL. 1991. Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 42(6):1018–1060. doi: 10.2165/00003495-199142060-00009.
  • Wei L, Chen Y, Shao D, Li J. 2022. Simultaneous determination of nine quinolones in pure milk using PFSPE-HPLC-MS/MS with PS-PAN nanofibers as a sorbent. Foods. 11(13):1843. doi: 10.3390/foods11131843.
  • Xiao J, Yang H, Qin L, Liang J, Li L, Fan X, Peng D. 2022. Rapid detection of fluoroquinolone residues in aquatic products based on a gold-labeled microwell immunochromatographic assay. Food Qual Saf. 6. doi: 10.1093/fqsafe/fyac033.
  • Zhang F, Liu B, Sheng W, Zhang Y, Liu Q, Li S, Wang S. 2018. Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem. 255:421–428. doi: 10.1016/j.foodchem.2018.02.060.
  • Ziarrusta H, Val N, Dominguez H, Mijangos L, Prieto A, Usobiaga A, Etxebarria N, Zuloaga O, Olivares M. 2017. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 409(27):6359–6370. doi: 10.1007/s00216-017-0575-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.