6,143
Views
43
CrossRef citations to date
0
Altmetric
Review Articles

Application of nanoparticles in cancer detection by Raman scattering based techniques

, , ORCID Icon, , , , & show all
Article: 1373551 | Received 10 May 2017, Accepted 25 Aug 2017, Published online: 19 Dec 2017

References

  • Dinish US, Balasundaram G, Chang Y-T, et al. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep. 2015;4:1.
  • Difining cancer: National cancer institute retrived [Internet]. 2014. [ cited 2014 Jun 10].
  • WHO Iafroc, GLOBOCAN, graph production: Global Cancer Observatory. Estimated number of incident cases of top 10 cancers. CA: A Cancer Journal for Clinicians; 2012.
  • Kallaway C, Almond LM, Barr H, et al. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn Ther. 2013;10(3):207–13.
  • Staniszewska-Slezak E, Malek K, Baranska M. Complementary analysis of tissue homogenates composition obtained by Vis and NIR laser excitations and Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2015;147:245–256.
  • Xu X, Li H, Hasan D, et al. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater. 2013;23(35):4332–4338.
  • Krafft C, Belay B, Bergner N, et al. Advances in optical biopsy–correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst. 2012;137(23):5533–5537.
  • Kong K, Kendall C, Stone N, et al. Raman spectroscopy for medical diagnostics–From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015;89:121–134.
  • Smith ZJ, Huser TR, Wachsmann-Hogiu S. Raman scattering in pathology. Anal Cell Pathol (Amst). 2012;35(3):145–163.
  • Recent KJ. Advances in the characterization of gaseous and liquid fuels by vibrational spectroscopy. Energies. 2015;8(4):3165–3197.
  • Tu Q, Chang C. Diagnostic applications of Raman spectroscopy. Nanomedicine. 2012;8(5):545–558.
  • Angel SM, Kulp TJ, Vess TM. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers. Applied Spectroscopy. 1992;46.
  • Shah NB, Jinping D, Bischof JC. Cellular uptake and nanoscale localization of gold nanoparticles in cancer usi. Mol Pharm. 2010;8(1):176–184.
  • Santos LF, Wolthuis R, Koljenović S, et al. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal Chem. 2005;77(20):6747–6752.
  • Lin D, Feng S, Pan J, et al. 1Key Laboratory of OptoElectronic Science and Technology for Medicine MoE, Fujian Normal, University F, China, 3Integrative Oncology Department - Imaging Unit BCCARC, Vancouver, B.C. VZL, Canada, et al. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express. 2011;19:13565–13577.
  • Sattler KD. Handbook of nanophysics: nanomedicine and nanorobotics. CRC Press; 2010.
  • Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem. 1977;84(1):1–20.
  • Hibben JH. Chemical applications of the Raman effect: I. Polymerization. J Chem Physics. 1937;5(9):706–710.
  • Timsah Z, Berrout J, Suraokar M, et al. Expression pattern of FGFR2, Grb2 and Plcγ1 acts as a novel prognostic marker of recurrence recurrence-free survival in lung adenocarcinoma. Am J Cancer Res. 2015;5(10):3135–3148.
  • Cao Y, Li D-W, Zhao L-J, et al. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors. Anal Chem. 2015;87(19):9696–9701.
  • Han XX, Cai LJ, Guo J, et al. Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering. Anal Chem. 2008;80(8):3020–3024.
  • Han XX, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem. 2009;394(7):1719–1727.
  • Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Advanced Drug Delivery Reviews. 2015;89:3–20.
  • Link S, El-Sayed MA, Properties S. Relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103(40):8410–8426.
  • El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34(4):257–264.
  • Jain PK, El-Sayed MA. Plasmonic coupling in noble metal nanostructures. Chem Phys Lett. 2010;487(4–6):153–164.
  • Papavassiliou GC. Optical properties of small inorganic and organic metal particles. Prog Solid State Chem. 1979;12(3–4):185–271.
  • Vo-Dinh T, Wang HN, Scaffidi J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics. 2010;3(1–2):89–102.
  • Kumar CS. Raman spectroscopy for nanomaterials characterization. Berlin Heidelberg: Springer Science & Business Media; 2012.
  • Mieszawska AJ, Mulder WJM, Fayad ZA, et al. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10(3):831–847.
  • Wang Y, Kang S, Khan A, et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep. 2016;6:21242.
  • Noh MS, Jun BH, Kim S, et al. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials. 2009;30(23–24):3915–3925.
  • Sangyeop Lee SK, Choo J, Shin SY, et al. Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy. Anal Chem. 2007;79:916–922.
  • Rycenga M, Xia X, Moran CH, et al. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman Scattering. Angew Chem Int Ed. 2011;50(24):5473–5477.
  • Nguyen AH, Lee J, Il Choi H, et al. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device. Biosens Bioelectron. 2015;70:358–365.
  • Tam F, Piotti ME, Freeman RG. SERS reporter molecules and methods. US Patent App. 2011, 13/163, 392.
  • Han XX, Jia HY, Wang YF, et al. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering. Anal Chem. 2008;80(8):2799–2804.
  • Zhao L, Kim TH, Kim HW, et al. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomater. 2015;20:155–164.
  • Beqa L, Fan Z, Singh AK, et al. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces. 2011;3(9):3316–3324.
  • Chon H, Lee S, Son SW, et al. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced raman scattering of hollow gold nanospheres. Anal Chem. 2009;81(8):3029–3034.
  • Qiu Y, Deng D, Deng Q, et al. Synthesis of magnetic Fe3O4-Au hybrids for sensitive SERS detection of cancer cells at low abundance. J Mater Chem B. 2015;3(22):4487–4495.
  • Liu R, Liu B, Guan G, et al. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem Commun (Camb). 2012;48(75):9421–9423.
  • Wang J, Liu R, Zhang C, et al. Synthesis of g-C3N4 nanosheet/Au@Ag nanoparticle hybrids as SERS probes for cancer cell diagnostics. RSC Adv. 2015;5(105):86803–86810.
  • Nguyen CT, Nguyen JT, Rutledge S, et al. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. Cancer Lett. 2010;292(1):91–97.
  • Dinish US, Fu CY, Soh KS, et al. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron. 2012;33(1):293–298.
  • Jiang L, Qian J, Cai F, et al. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Anal Bioanal Chem. 2011;400(9):2793.
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327.
  • Amornphimoltham P, Masedunskas A, Weigert R. Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv Drug Deliv Rev. 2011;63(1–2):119–128.
  • Kalmodia S, Harjwani J, Rajeswari R, et al. Synthesis and characterization of surface-enhanced Raman-scattered gold nanoparticles. Int J Nanomed. 2013;8:4327–4338.
  • Paciotti GF, Weinreich D, Goia N, et al. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. 2004;169–183.
  • Qian X, Peng XH, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90.
  • Keren S, Zavaleta C, Cheng Z, et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A. 2008;105(15):5844–5849.
  • Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842–1851.
  • Jain PK, Huang X, El-Sayed IH, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41(12):1578–1586.
  • El-Sayed IH. Nanotechnology in head and neck cancer: the race is on. Curr Oncol Rep. 2010;12(2):121–128.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release. 2000;65(1–2):271–284.
  • Baranska M. Optical spectroscopy and computational methods in biology and medicine. Vol. 14, Challenges and Advances in Computational Chemistry and Physics. Springer Science & Business Media; 2014.
  • Takei H, Okamoto T. Morphology effects of cap-shaped silver nanoparticle films as a SERS platform. Anal Sci. 2016;32(3):287–293.
  • Ingle T, Dervishi E, Biris AR, et al. Raman spectroscopy analysis and mapping the biodistribution of inhaled carbon nanotubes in the lungs and blood of mice. Journal Of Applied Toxicology. 2013;33(10):1044–1052.
  • Smith RA, Wender R, Levin B, et al. American cancer society guidelines for the early detection of cancer: update of early detection guidelines for prostate, colorectal, and endometrial cancers. CA Cancer J Clini. 2001;51:38–75.
  • Paik ML, Scolieri MJ, Brown SL, et al. Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol. 2000;163(6):1693–1696.
  • Sánchez Salmón AS, Salgado JB, Morell AR. PET in abdominal pathology: advantages and limitations. Abdom Imaging. 2006;31(2):174–181.
  • Montgomery E, Bronner MP, Goldblum JR, et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol. 2001;32(4):368–378.
  • Gayet M, van der Aa A, Beerlage H, et al. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection. A systematic review. BJU International. 2016;117(3):392–400.
  • Pennes D, Glazer G, Wimbish K, et al. Chest wall invasion by lung cancer: limitations of CT evaluation. AJR Am J Roentgenol. 1985;144(3):507–511.
  • Bedrosian I, Mick R, Orel SG, et al. Changes in the surgical management of patients with breast carcinoma based on preoperative magnetic resonance imaging. Cancer. 2003;98(3):468–473.
  • Santamaría G, Velasco M, Farrús B, et al. Preoperative MRI of pure intraductal breast carcinoma–a valuable adjunct to mammography in assessing cancer extent. Breast. 2008;17(2):186–194.
  • Hanasono MM, Kunda LD, Segall GM, et al. Uses and limitations of FDG positron emission tomography in patients with head and neck cancer. Laryngoscope. 1999;109(6):880–885.
  • Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev. 2013;113(8):5766–5781.
  • Yang J, Walicki J, Abderrahmani A, et al. Expression of an uncleavable n-terminal rasgap fragment in insulin secreting cells increases their resistance towards apoptotic stimuli without affecting their glucose-induced insulin secretion. The American Society for Biochemistry and Molecular Biology.
  • Yang J, Wang Z, Zong S, et al. Distinguishing breast cancer cells using surface-enhanced Raman scattering. Anal Bioanal Chem. 2012;402(3):1093–1100.
  • Li H, Hasan D, Ruoff RS, et al. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Advanced Functional Materials. 2013;23(35):4332-8.14.
  • Dinish US, Yaw FC, Agarwal A, et al. Development Of highly reproducible nanogap sers substrates: comparative performance analysis and its application for glucose sensing.biosens Bioelectron. 2011;26(5):1987–1992.
  • Xu Wang XQ, Beitler JJ, Chen ZG, et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 2013;23(35):4332–4338.
  • Zhao L, Kim T-H, Kim H-W, et al. Surface-enhanced raman scattering (sers)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomaterialia. 2015;20:155-164. DOI: 10.1016/j.actbio.2015.03.036
  • Zheng C, Liang L, Xu S, et al. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Anal Bioanal Chem. 2014;406(22):5425–5432.
  • Allain LR, Dinh TV. Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Analytica Chimica Acta. 2002;469(1):149–154.
  • Wabuyele MB, Yan F, Vo-Dinh T. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene. Anal Bioanal Chem. 2010;398(2):729–736.
  • Pang Y, Wang C, Wang J, et al. Fe3O4@Ag. Magnetic nanoparticles for microrna capture and duplex-specific nuclease signal amplification based sers detection in cancer cells. Biosens Bioelectron. 2016;79:574–580.
  • Matousek P, Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J Biomed Opt. 2007;12(2):024008.
  • Winawer SJ, Fletcher RH, Miller L, et al. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology. 1997;112(2):594–642.
  • Zheng F, Qin Y, Chen K. Sensitivity map of laser tweezers Raman spectroscopy for single-cell analysis of colorectal cancer. J Biomed Opt. 2007;12(3):034002.
  • da Paz MC, Santos Mde F, Santos CM, et al. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int J Nanomed. 2012;7:5271–5282.
  • Koljenovi S, Choo-Smith L.-P., Schut T.C.B. Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by raman spectroscopy. Laboratory Investigation. 2002;82(10):1265.
  • Aydin D., Feychting M., Schüz J. Mobile phone use and brain tumors in children and adolescents: a multicenter case-control study. J Natl Cancer Inst. ;103(16):1264–1276.
  • Mehmet Kahraman O, Bayrak ¨FARUK, Ma ¨MERAYDIN, et al. Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering. 2009;63(10).
  • Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18(5):829–834.
  • Diaz RJ, McVeigh PZ, O’Reilly MA, et al. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. Nanomedicine. 2014;10(5):1075–1087.
  • Feng S, Chen R, Lin J, et al. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron. 2011;26(7):3167–3174.
  • Tang H-WY, Yang B, Kirkham J, et al. Probing Intrinsic and Extrinsic Components in Single Osteosarcoma. Anal Chem. 2007;79(10):3646–3653.
  • Bei J., Li Y., Jia W, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nature Genetics. 2010;42:599–603.
  • Feng S, Chen R, Lin J, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron. 2010;25(11):2414–2419.
  • Pang Y, Wang C, Wang J, et al. Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron. 2016;79:574–580.
  • Yang T, Guo X, Wu Y, et al. Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interfaces. 2014;6(23):20985–20993.
  • Bizzarri A R., Bizzarri A.R., Cannistraro S. 2011. Sers-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. International Journal Of Nanomedicine 2011 (6):2033—2042. doi:10.2147/IJN.
  • Domenici F, Bizzarri AR, Cannistraro S. Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem. 2012;421(1):9–15.
  • Carvalho LF, Bonnier F, O’Callaghan K, et al. Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma. Exp Mol Pathol. 2015;98(3):502–509.