11,622
Views
178
CrossRef citations to date
0
Altmetric
Review Article

Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon

, , , , , , , , , , & show all
Article: 1488497 | Received 05 Jan 2018, Accepted 08 Jun 2018, Published online: 03 Jul 2018

References

  • Yue J, Wu J, Liu D, et al. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector. Nanoscale Res Lett. 2015;10:1.
  • Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006;4(3):218–14.
  • Wirth T, Ylä-Herttuala S. Gene therapy used in cancer treatment. Biomedicines. 2014;2(2):149–162.
  • Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27.
  • Zhang X, Zhang J, Quan G, et al. The serum-resistant transfection evaluation and long-term stability of gene delivery dry powder based on mesoporous silica nanoparticles and polyethyleneimine by freezing-drying. AAPS PharmSciTech. 2017;18(5):1536–1543.
  • Mokhtarzadeh A, Parhiz H, Hashemi M, et al. P53-derived peptides conjugation to PEI: an approach to producing versatile and highly efficient targeted gene delivery carriers into cancer cells. Expert Opin Drug Deliv. 2016;13(4):477–491.
  • Guo Z, Kong Z, Wei Y, et al. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2017;173:783–791.
  • Keles E, Song Y, Du D, et al. Recent progress in nanomaterials for gene delivery applications. Biomater Sci. 2016;4(9):1291–1309.
  • Shi S, Shi K, Tan L, et al. The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials. 2014;35(15):4536–4547.
  • Zhao X, Cui H, Chen W, et al. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One. 2014;9(6):98919.
  • Zhang T, Xue X, He D, et al. A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett. 2015;365(2):156–165.
  • Abebe DG, Kandil R, Kraus T, et al. Three-layered biodegradable micelles prepared by two-step self-assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock copolymers as efficient gene delivery system. Macromol Biosci. 2015;15(5):698–711.
  • Feng G, Liu L, Gong Q, et al. Research progress of in vivo nucleic acid delivery with poly (ethylenimine). Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(12):1544–1550.
  • Chen Z, Krishnamachary B, Bhujwalla ZM. Degradable dextran nanopolymer as a carrier for choline kinase (ChoK) siRNA cancer therapy. Nanomaterials (Basel). 2016;6(2):34.
  • Godbey WT, Wu KK, Mikos AG. Poly (ethylenimine) and its role in gene delivery. J Control Release. 1999;60(2):149–160.
  • Lai WF, Green DW, Jung HS. Linear poly(ethylenimine) cross-linked by methyl-beta-cyclodextrin for gene delivery. Curr Gene Ther. 2014;14(4):258–268.
  • Uta L, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60(2):247–266.
  • Lungu CN, Diudea MV, Putz MV, et al. Linear and branched PEIs (polyethylenimines) and their property space. Int J Mol Sci. 2016;17(4):555.
  • Utsuno K, Kono H, Tanaka E, et al. Low molecular weight branched PEI binding to linear DNA. Chem Pharm Bull (Tokyo). 2016;64(10):1484–1491.
  • Goyal R, Bansal R, Gandhi RP, et al. Copolymers of covalently crosslinked linear and branched polyethylenimines as efficient nucleic acid carriers. J Biomed Nanotechnol. 2014;10(11):3269–3279.
  • DeLuca JL, Hickey DP, Bamper DA, et al. Layer-by-layer assembly of ferrocene-modified linear polyethylenimine redox polymer films. Chemphyschem. 2013;14(10):2149–2158.
  • Koo H, Jin GW, Kang H, et al. Biodegradable branched poly(ethylenimine sulfide) for gene delivery. Biomaterials. 2010;31(5):988–997.
  • Shih Y, Venault A, Zwitterionic-Shielded A. Carrier with pH-modulated reversible self-assembly for gene transfection. Langmuir. 2017;33(8):1914–1926.
  • Wang T, Chen Q, Lu H, et al. Shedding PEG palisade by temporal photostimulation and intracellular reducing milieu for facilitated intracellular trafficking and DNA release. Bioconjug Chem. 2016;27(8):1949–1957.
  • Larsen AK, Malinska D, Koszela-Piotrowska I, et al. Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity: implications for nucleic acid delivery and gene therapy. Mitochondrion. 2012;12(1):162–168.
  • Lazarus GG, Singh M. In vitro cytotoxic activity and transfection efficiency of polyethyleneimine functionalized gold nanoparticles. Colloids Surf B Biointerfaces. 2016;145:906–911.
  • Meleshko AN, Petrovskaya NA, Savelyeva N, et al. Phase I clinical trial of idiotypic DNA vaccine administered as a complex with polyethylenimine to patients with B-cell lymphoma. Hum Vaccin Immunother. 2017;13(6):1–6.
  • Pishavar E, Shafiei M, Mehri S, et al. The effects of polyethylenimine/DNA nanoparticle on transcript levels of apoptosis-related genes. J Phys Chem B. 2017;40(4):1–4.
  • Santos JL, Ren Y, Vandermark J, et al. Continuous production of discrete plasmid DNA-polycation nanoparticles using flash nanocomplexation. Small. 2016;12(45):6214–6222.
  • Curtis KA, Miller D, Millard P, et al. Unusual salt and pH induced changes in polyethylenimine solutions. PLoS One. 2016;11(9):e0158147.
  • Ziebarth JD, Kennetz DR, Walker NJ, et al. Structural comparisons of PEI/DNA and PEI/siRNA complexes revealed with molecular dynamics simulations. J Phys Chem B. 2017;121(8):1941–1952.
  • Guo A, Wang Y, Xu S, et al. Preparation and evaluation of pH-responsive charge-convertible ternary complex FA-PEI-CCA/PEI/DNA with low cytotoxicity and efficient gene delivery. Colloids Surf B Biointerfaces. 2017;152:58–67.
  • Dempsey C, Lee I, Cowan KR, et al. Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery. Colloids Surf B Biointerfaces. 2013;112:108–112.
  • Wang C, Sun G, Wang Y, et al. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice. Drug Deliv. 2017;24(1):651–659.
  • Park JS, Yi SW, Kim HJ, et al. Construction of PLGA nanoparticles coated with polycistronic SOX5, SOX6, and SOX9 genes for chondrogenesis of human mesenchymal stem cells. ACS Appl Mater Interfaces. 2017;9(2):1361–1372.
  • Guan X, Guo Z, Wang T, et al. A pH-responsive detachable PEG shielding strategy for gene delivery system in cancer therapy. Biomacromolecules. 2017;18(4):1342–1349.
  • Yang W, Bai Y, Wang X, et al. Attaching biosynthesized bacterial magnetic particles to polyethylenimine enhances gene delivery into mammalian cells. J Biomed Nanotechnol. 2016;12(4):789–799.
  • Kichler A, Leborgne C, Danos O. Dilution of reporter gene with stuffer DNA does not alter the transfection efficiency of polyethylenimines. J Gene Med. 2005;7(11):1459–1467.
  • Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–663.
  • Ren Y, Jiang X, Pan D, et al. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules. 2010;11(12):3432–3439.
  • Forcato DO, Fili AE, Alustiza FE, et al. Transfection of bovine fetal fibroblast with polyethylenimine (PEI) nanoparticles: effect of particle size and presence of fetal bovine serum on transgene delivery and cytotoxicity. Cytotechnology. 2017;69(655):1–11.
  • Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109(2):259–302.
  • Derouazi M, Girard P, Van Tilborgh F, et al. Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng. 2004;87(4):537–545.
  • Sang Y, Xie K, Mu Y, et al. Salt ions and related parameters affect PEI-DNA particle size and transfection efficiency in Chinese hamster ovary cells. Cytotechnology. 2015;67(1):67–74.
  • Sharma VK, Thomas M, Klibanov AM. Mechanistic studies on aggregation of polyethylenimine-DNA complexes and its prevention. Biotechnol Bioeng. 2005;90(5):614–620.
  • Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001;71(1):39–51.
  • Grosse S, Aron Y, Honoré I, et al. Lactosylated polyethylenimine for gene transfer into airway epithelial cells: role of the sugar moiety in cell delivery and intracellular trafficking of the complexes. J Gene Med. 2004;6(3):345–356.
  • Gonzalez-Fernandez T, Sathy BN, Hobbs C, et al. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater. 2017;55:226–238.
  • Ye X, Li S, Chen X, et al. Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture. Int J Biol Macromol. 2017;94:492–499.
  • Gurumurthy B, Bierdeman PC, Janorkar AV. Spheroid model for functional osteogenic evaluation of human adipose derived stem cells. J Biomed Mater Res A. 2017;105(4):1230–1236.
  • Kumar S, Raj S, Sarkar K, et al. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale. 2016;8(12):6820–6836.
  • Dongjie S, Wu H, Shen F, et al. Carbon dioxide-modified polyethylenimine as a novel gene delivery vector and its in vitro validation. J Biomater Appl. 2017;31(9):1257–1266.
  • Liu S, Zhou D, Yang J, et al. Bioreducible Zinc(II)-coordinative polyethylenimine with low molecular weight for robust gene delivery of primary and stem cells. J Am Chem Soc. 2017;139(14):5102–5109.
  • Pang ST, Lin FW, Chuang CK, et al. Co-delivery of docetaxel and p44/42 MAPK siRNA using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol Biosci. 2017;17(5):1600421.
  • Oroojalian F, Rezayan AH, Shier WT, et al. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl- polyethylenimine -containing nanoplexes. Int J Pharm. 2017;523(1):102–120.
  • Li Y, Guo M, Lin Z, et al. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomed. 2016;11:6693–6702.
  • Dong S, Zhou X, Yang J. TAT modified and lipid - PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA. Biomed Pharmacother. 2016;84:954–961.
  • Pandey PC, Pandey G, Narayan RJ. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis. Biointerphases. 2017;12(1):011005.
  • Wang H, Li Y, Zhang M, et al. Redox-activatable ATP-depleting micelles with dual modulation characteristics for multidrug-resistant cancer therapy. Adv Healthc Mater. 2017;6(8):1601293.
  • Yang B, Ni X, Chen L, et al. Honokiol-loaded polymeric nanoparticles: an active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. Drug Deliv. 2017;24(1):660–669.
  • Wang Q, Jiang H, Li Y, et al. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials. 2017;122:10–22.
  • Chien Y, Chang YL, Li HY, et al. Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater. 2015;13:228–244.
  • Wu Y, Zhang Y, Zhang W, et al. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf B Biointerfaces. 2016;138:60–69.
  • Chen L, Ji F, Bao Y, et al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2017;70:418–429.
  • Wang S, Zhang J, Wang Y, et al. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine. 2016;12(2):411–420.
  • Jia H, Chen S, Zhuo R, et al. Polymeric prodrug for bio-controllable gene and drug co-delivery. Sci China Chem. 2016;59(11):1397–1404.
  • Chen W, Meng F, Cheng R, et al. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. J Control Release. 2014;190:398–414.
  • Liu S, Huang W, Jin MJ, et al. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. Eur J Pharm Sci. 2016;82:171–182.
  • Yu K, Zhao J, Yu C, et al. Role of four different kinds of polyethylenimines (PEIs) in preparation of polymeric lipid nanoparticles and their anticancer activity study. J Cancer. 2016;7(7):872–882.
  • Fang G, Zeng F, Yu C, et al. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers. Colloids Surf B Biointerfaces. 2014;122:472–481.
  • Cho WY, Hong SH, Singh B, et al. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA. Eur J Pharm Biopharm. 2015;94:450–462.
  • Lee JL, Lo CW, Inserra C, et al. Ultrasound enhanced PEI-mediated gene delivery through increasing the intracellular calcium level and PKC-delta protein expression. Pharm Res. 2014;31(9):2354–2366.
  • Kim YH, Park JH, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103(1):209–219.
  • Yu K, Zhao J, Zhang Z, et al. Enhanced delivery of Paclitaxel using electrostatically-conjugated herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int J Pharm. 2016;497(1–2):78–87.
  • Gao S, Tian H, Guo Y, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–193.
  • Muthiah M, Che HL, Kalash S, et al. Formulation of glutathione responsive anti-proliferative nanoparticles from thiolated Akt1 siRNA and disulfide-crosslinked PEI for efficient anti-cancer gene therapy. Colloids Surf B Biointerfaces. 2015;126:322–327.
  • Liang G, Li Y, Feng W, et al. Polyethyleneimine-coated quantum dots for miRNA delivery and its enhanced suppression in HepG2 cells. Int J Nanomed. 2016;11:6079–6088.
  • Zhang L, Yu M, Wang J, et al. Low molecular weight PEI-based vectors via acid-labile ortho ester linkage for improved gene delivery. Macromol Biosci. 2016;16(8):1175–1187.
  • Luten J, van Nostrum CF, De Smedt SC, et al. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release. 2008;126(2):97–110.
  • Qiu S, Granet R, Mbakidi JP, et al. Delivery of tanshinone IIA and alpha-mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorg Med Chem Lett. 2016;26(10):2503–2506.
  • Ravanshad R, Karimi Zadeh A, Amani AM, et al. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Reviews & Experiments.2018;9(1):1373551.
  • Mousavi S, Esmaeili H, Arjmand O, et al. Biodegradation study of nanocomposites of phenol novolac epoxy/unsaturated polyester resin/egg shell nanoparticles using natural polymers. Journal of Materials. 2015; 2015:1–6.
  • Mousavi SM, Hashemi SA, Jahandideh S, et al. Modification of Phenol Novolac Epoxy Resin and Unsaturated Polyester Using Sasobit and Silica Nanoparticles. Polymers from Renewable Resources. 2017; 8(3): 117–131.
  • Mousavi S, Arjmand O, Hashemi S, et al. Modification of the Epoxy Resin Mechanical and Thermal Properties with Silicon Acrylate and Montmorillonite Nanoparticles. Polymers from Renewable Resources. 2016; 7(3):101–113.
  • Amani AM, Hashemi SA, Mousavi SM, et al. Electric Field Induced Alignment of Carbon Nanotubes: Methodology and Outcomes. Carbon Nanotubes - Recent Progress, London: IntechOpen; 2018. 71-88.
  • Hashemi SA, Mousavi SM, Effect of bubble based degradation on the physical properties of Single Wall Carbon Nanotube/Epoxy Resin composite and new approach in bubbles reduction. Composites Part A.2016; 90:457–469.
  • Hashemi SA, Mousavi SM, Arjmand M, et al. Electrified single‐walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: Effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym Compos. 2018; 39(2):1139–1148.
  • Mousavi SM, Hashemi SA, Amani AM, et al. Polyethylene Terephthalate/Acryl Butadiene Styrene Copolymer Incorporated with Oak Shell, Potassium Sorbate and Egg Shell Nanoparticles for Food Packaging Applications: Control of Bacteria Growth, Physical and Mechanical Properties. Polymers from Renewable Resources. 2017; 8(4): 177–196.
  • Goudarzian N, Hashemi SA, Mirjalili M, Unsaturated Polyester Resins Modified With Cresol Novolac Epoxy and Silica Nanoparticles: Processing and Mechanical Properties. Int J Chem Pet Sci. 2016; 5(1):13–26.
  • Hashemi SA, Mousavi SM, Faghihi R, et al. Lead oxide-decorated graphene oxide/epoxy composite towards X-ray radiation shielding. Rad Phy Chem. 2018; 146:77–85.
  • Mousavi S, Aghili A, Hashemi S, et al. Improved morphology and properties of nanocomposites, linear low density polyethylene, ethylene-co-vinyl acetate and nano clay particles by electron beam. Polymers from Renewable Resources. 2016;7(4):135.