99
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of wood modification with polyethylene glycol and various carboxylic acids on the dimensional stability of beech wood (Fagus sylvatica)

, & ORCID Icon
Pages 120-134 | Received 24 May 2022, Accepted 03 Jul 2023, Published online: 04 Aug 2023

References

  • Acid-base properties of carboxylic acids.
  • Aldrich S. 2019. Sicherheitsdatenblatt pyromellitsäure.
  • Aldrich S. 2020. Safety data sheet L-Glutamic acid hydrochloride.
  • Alexander A, Emanuel M, Balal AN. 2006. The solubilities of benzene polycarboxylic acids in water. J Chem Thermodyn. 38(5):565–571. doi:10.1016/j.jct.2005.07.007.
  • Bjurhager I, Ljungdahl J, Wallström L, Gamstedt EK, Berglund LA. 2010. Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung. 64(2):243–250. doi:10.1515/hf.2010.024.
  • Burchard W. 1985. Polysaccharide. eigenschaften und nutzung. institut für makromolekulare chemie der universität Freiburg. Berlin: Springer-Verlag.
  • Choi H-M. 1992. Nonformaldehyde polymerization-crosslinking treatment of cotton fabrics for improved strength retention. Text Res J. 62(10):614–618. doi:10.1177/004051759206201010.
  • Das D, Bakshi S, Bhattacharya P. 2016. Dyeing of EDTA-modified cotton with reactive dyes. Cloth Text Res J. 34(3):196–206. doi:10.1177/0887302X16652998.
  • Dawson BSW, Franich RA, Kroese HW, Steward D. 1999. Reactivity of radiata pine sapwood towards carboxylic acid anhydrides. Holzforschung. 53(2):195–198. doi:10.1515/HF.1999.032.
  • de Cuadro P, Belt T, Kontturi KS, Reza M, Kontturi E, Vuorinen T, Hughes M. 2015. Cross-linking of cellulose and poly(ethylene glycol) with citric acid. React Funct Polym. 90:21–24. doi:10.1016/j.reactfunctpolym.2015.03.007.
  • Despot R, Hasan M, Jug M, Šefc B. 2008. Biological durability of wood modified by citric acid. Drv Ind. 59(2):55–59.
  • Dingels C, Schömer M, Frey H. 2011. Die vielen Gesichter des Poly(ethylenglykol)s. Chem unserer Zeit. 45(5):338–349. doi:10.1002/ciuz.201100551.
  • Dong Y, Gao S, Wang K, Zhan X, Li Z, Zhao Y, Wu M, Hughes M. 2023. The effect mechanism and properties of poplar wood cross-linking modified with polyols and polycarboxylic acid. Wood Material Science & Engineering.
  • Dong Y, Liu X, Liu J, Yan Y, Wang K, Li J. 2021. Evaluation of anti-mold, termite resistance and physical-mechanical properties of bamboo cross-linking modified by polycarboxylic acids. Constr Build Mater. 272:121953.
  • Essoua GG, Blanchet P, Landry V, Beauregard R. 2015. Maleic anhydride treated wood: effects of drying time and esterification temperature on properties. Bioresources. 10(4):6830–6860. doi:10.15376/biores.10.4.6830-6860.
  • Essoua GG, Blanchet P, Landry V, Beauregard R. 2016. Pine wood treated with a citric acid and glycerol mixture: biomaterial performance improved by a bio-byproduct. Bioresources. 11(2):3049–3072. doi:10.15376/biores.11.2.3049-3072.
  • Feng X, Xiao Z, Sul S, Wang Q, Xie Y. 2014. Esterification of wood with citric acid. The catalystic effects of sodium hypophosphite (SHP). Holzforschung. 68(4):427–433.
  • Fischer E, Speier A. 1895. Darstellung der Ester. Ber Dtsch Chem Ges. 28(3):3252–3258. doi:10.1002/cber.189502803176.
  • Freeman MH, Shupe TF, Vlosky RP, Barnes HM. 2003. Past, present, and future of the wood preservation industry. For Prod J. 53(10):8–15.
  • Fuchs W. 1928. Zur kenntnis des genuinen lignins, I.: Die acetylierung des fichtenholzes. Ber Dtsch Chem Ges (A and B Ser). 61(5):948–951. doi:10.1002/cber.19280610512.
  • GESTIS Stoffdatenbank (Hg.). 2016. Safety data sheet glutamic acid.
  • Grattan DW. 2014. Waterlogged wood. In: Pearson C, editor. Conservation of marine archaeological objects. Burlington: Elsevier Science; p. 55–67.
  • Hasan M, Despot R, Šefc B, Ištok I, Sedlar T, Lacić R. 2012. Optimisation of Modification of Beech Wood by Citric Acid; In: Jones D, Militz H, Petrič M, Pohleven F, Humar M, Pavlič M, editors. The Sixth European Conference on Wood Modification. Proceedings. Ljubljana, Slovenia.
  • Hill CAS. 2006. Wood modification: chemical, thermal and other processes. In: Wiley series in renewable resources. Chichester, NJ: John Wiley & Sons; p. 1–239.
  • Hoffmann P. 1986. On the stabilization of waterlogged Oakwood with PEG. II. Designing a two-step treatment for multi-quality timbers. Stud Conserv. 31:103–113.
  • Hoffmann P. 2013. Conservation of archaeological ships and boats. Personal experiences. London: Archetype.
  • Jeremic D, Cooper P, Brodersen P. 2007. Penetration of poly(ethylene glycol) into wood cell walls of red pine. Holzforschung. 61:272–278. doi:10.1515/HF.2007.068.
  • Kiljunen S, Koski A, Kunttu M, Valkonen T. 2018. Impregnation of chemicals into wood. Veröffentlichungsnr. EP2485880B1.
  • Kim B-H, Jang J, Ko S-W. 2000. Durable press finish of cotton fabric using malic acid as a crosslinker. Fibers Polym. 1(2):116–121. doi:10.1007/BF02875195.
  • Kim I, Karlsson O, Jones D, Mantanis G, Sandberg D. 2021. Dimensional stabilisation of Scots pine (Pinus sylvestris L.) sapwood by reaction with maleic anhydride and sodium hypophosphite. Eur J Wood Wood Prod. 79(3):589–596. doi:10.1007/s00107-020-01650-6.
  • Kollmann F, Côté WA. 1968. Principles of wood science and technology. Berlin: Allen Unwin; Springer.
  • Kurkowiak K, Emmerich L, Militz H. 2021. Wood chemical modification based on bio-based polycarboxylic acid and polyols – status quo and future perspectives. Wood Mat Sci Eng. 17(6):1–15. doi:10.1080/17480272.2021.1925961.
  • Larnøy E, Karaca A, Gobakken LR, Hill CAS. 2018. Polyesterification of wood using sorbitol and citric acid under aqueous conditions. Int Wood Prod J. 9(2):66–73. doi:10.1080/20426445.2018.1475918.
  • Lee SH, Md Tahir P, Lum WC, Tan LP, Bawon P, Park B-D, Osman Al Edrus SSA, Abdullah UH, 2020. A review on citric acid as green modifying agent and binder for wood. Polymers (Basel). 12(8):1–21. doi:10.3390/polym12081692.
  • L’Hostis C, Thévenon M-F, Fredon E, Gérardin P. 2018. Improvement of beech wood properties byin situ formation of polyesters of citric and tartaric acid in combination with glycerol. Holzforschung. 72(4):291–299. doi:10.1515/hf-2017-0081.
  • Lund K, Brelid H. 2014. 1,2,3,4-Butanetetracarboxylic acid cross-linked softwood kraft pulp fibers for use in fluff pulp applications. J Eng Fibers Fabr. 9(3). doi:10.1177/155892501400900317.
  • Meints T, Hansmann C, Gindl-Altmutter W. 2018. Suitability of different variants of polyethylene glycol impregnation for the dimensional stabilization of oak wood. Polymers (Basel). 10(1):81. doi:10.3390/polym10010081.
  • Militz H, Mai C. 2018a. 4.2 holzschutz. 4.2.8 chemischer holzschutz. In: Wagenführ A, F Scholz, editors. Taschenbuch der Holztechnik. 3., aktualisierte Auflage. München: Fachbuchverlag Leipzig im Carl Hanser Verlag; p. 476–485.
  • Militz H, Mai C. 2018b. 4.3 sonstige vergütungsverfahren. 4.3.1 wirkungsprinzipien der holzmodifizierung. In: Wagenführ A, F Scholz, editors. Taschenbuch der holztechnik. unter mitarbeit von R. emmler. 3 Aufl. München: Fachbuchverlag Leipzig im Carl Hanser Verlag; p. 485–489.
  • Morén R. 1981. Die polyäthylenglykol-imprägnierung von holz und ihre auswirkungen bei holztrocknung und holzbearbeitung. Holz als Roh- und Werkstoff. 39(12):142–152. doi:10.1007/BF02619122.
  • Mortensen MN. 2009. Stabilization of polyethylene glycol in archaeological wood. Dissertation, Technical University of Denmark.
  • Mubarok M, Militz H, Dumarçay S, Gérardin P. 2020. Beech wood modification based on in situ esterification with sorbitol and citric acid. Wood Sci Technol. 54(3):479–502. doi:10.1007/s00226-020-01172-7.
  • Organ RM. 1959. Carbowax and other materials in the treatment of waterlogged paleolithic wood. Stud Conserv. 4:96–105.
  • Pereira FV, Gurgel LVA, Gil LF. 2010. Removal of Zn2 + from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD) (176).
  • Peyer SM, Wolcott MP, Fenoglio DJ. 2000. Reducing moisture swell of densified wood with polycarboxylic acid resin. Wood Fiber Sci. 32:520–526.
  • Puttmann S, Burian B, Müller L, Müller M. 2023. Impact of different polyethylene glycol wood treatments on the adhesive properties of beech wood. Int Wood Prod J. 14(1):34–41.
  • Puttmann S, Müller L, Burian B, Müller M. 2018. Influence of various polyethylene glycol treatments on the dimensional stability of beech wood. Proceedings of the 9th European conference on wood modification 2018. Arnhem, The Netherlands.
  • Rosenqvist AM. 1959. The stabilizing of wood found in the Viking ship of Oseberg—Part II. Stud Conserv. 4:62–72.
  • Roussel C, Marchetti V, Lemor A, Wozniak E, Loubinoux B, Gérardin P. 2001. Chemical modification of wood by polyglycerol/maleic anhydride treatment. Holzforschung. 55(1):57–62. doi:10.1515/HF.2001.009.
  • Rowell RM. 2014. Acetylation of wood – a review. Int J Lignocellul Prod. 1(1):1–27. doi:10.22069/ijlp.2014.1920.
  • Sandberg D, Kutnar A, Karlsson O, Jones D. 2021. Wood modification technologies: principles, sustainability, and the need for innovation. 1 Aufl. Weinheim: CRC Press.
  • Santoso M, Widyorini R, Prayitno TA, Sulistyo J. 2017. Bonding performance of maltodextrin and citric acid for particleboard made from nipa fronds. J Korean Wood Sci Technol. 4(45):432–443.
  • Šauperl O, Stana-Kleinschek K, Ribitsch V. 2009. Cotton cellulose 1, 2, 3, 4 buthanetetracarboxylic acid (BTCA) crosslinking monitored by some physical—chemical methods. Text Res J. 79(9):780–791. doi:10.1177/0040517508096222.
  • Scheffer TC, Morrell JJ. 1998. Natural durability of wood: a worldwide checklist of species. Oregon State University. Forest Research Laboratory.
  • Schmid, R. D. 2016. Taschenatlas der Biotechnologie und Gentechnik. 3. Auflage. Weinheim: VCH, Acta Humaniora.
  • Schneider A. 1969. Beiträge zur dimensionsstabilisierung des holzes mit polyäthylenglykol - erste mitteilung: grundlegende untersuchungen zur dimensionsstabilisierung des holzes mit polyäthylenglykol. Holz als Roh- und Werkstoff. 6:27.
  • Schneider A. 1970. Beiträge zur Dimensionsstabilisierung des Holzes mit Polyäthylenglykol- Zweite Mitteilung: Untersuchungen über Eigenschaftsänderungen des Holzes durch Tränkung mit Polyäthylenglykol und über die Wirksamkeit verschiedener Tränkverfahren. Holz als Roh- und Werkstoff. 28(1):20–34. doi:10.1007/BF02615722.
  • Schramm C, Rinderer B. 1999. HPLC analysis of polycarboxylic acids used as durable press finishing agents/ organic catalysts for cellulosic material. Fresenius J Anal Chem. 364(8):714–719. doi:10.1007/s002160051420.
  • Schramm C, Rinderer B, Bobleter O. 1997. Kinetic data for the crosslinking reaction of polycarboxylic acids with cellulose. J Soc Dyers Colour. 113(12):346–349. doi:10.1111/j.1478-4408.1997.tb01861.x.
  • Senna AM, Novack KM, Botaro VR. 2014. Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydr Polym. 114:260–268. doi:10.1016/j.carbpol.2014.08.017.
  • Sheehan JC, Hess GP. 1955. A New method of forming peptide bonds. J Am Chem Soc. 77(4):1067–1068. doi:10.1021/ja01609a099.
  • Shen L, Xu H, Kong L, Yang Y. 2015. Non-Toxic crosslinking of starch using polycarboxylic acids: kinetic study and quantitative correlation of mechanical properties and crosslinking degrees. J Polym Environ. 23(4):588–594. doi:10.1007/s10924-015-0738-3.
  • Sipahi Saglam E. 2003. Synthese und charakterisierung spezieller cellulose-pfropfcopolymerer. Dissertation. Technische Universität Darmstadt. Darmstadt. Fachbereich Chemie.
  • Stamm AJ. 1956. Dimensional stabilization of wood with carbowaxes 1. For Prod J. 6:201–204.
  • Stamm AJ. 1959, Oct 1. Effect of polyethylene glycol on the dimensional stability of wood. For Prod J. IX:375–381.
  • Teacaˇ C-A, Tanasaˇ F. 2020. Wood surface modification - classic and modern approaches in wood chemical treatment by esterification reactions. Coatings. 10(7):629.
  • Uraki Y, Hashida K, Watanabe N, Sano Y, Sasaya T, Fujimoto H. 1994. Novel wood processing by maleic acid - glycerol mixture system: improvement of water resistance and mechanical property of cellulose by the processing. J Wood Chem Technol. 14(3):429–449. doi:10.1080/02773819408003106.
  • Viduka A. 2002. Survey of methods used by some large institutions specialising in the conservation of wet organic archaeological materials. The Winston Churchill Memorial Australia.
  • Vollhardt KPC, Schore NE, Peter K. 2005. Organische Chemie, 4. Aufl. Wiley-VCH; p. 1–1542.
  • Vukusic SB, Katovic D, Grgac SF, Trajkovic J, Voncina B. 2010. Study of the wood modification process with polycarboxylic acids and microwave tratment. Wood Res. 55(3):121–130.
  • Vukusic SB, Katovic D, Schramm C, Trajkovic J, Sefc B. 2006. Polycarboxylic acids as non-formaldehyde anti-swelling agents for wood. Holzforschung. 60(4):439–444. doi:10.1515/HF.2006.069.
  • Wallström L, Lindberg KAH. 1999. Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique. Wood Sci Technol. 33(2):111–122. doi:10.1007/s002260050103.
  • Wang H, Zhang C, Chu X, Zhu P. 2020. Mechanism of Antiwrinkle finishing of cotton fabrics using mixed polycarboxylic acids. Int J Polym Sci. 1–10. doi:10.1155/2020/3876595.
  • Wang Y. 2009. Polymeric composition for cellulosic material binding and modifications. Veröffentlichungsnr: WO. 2009/006356 A1.
  • Welch CM. 1988. Tetracarboxylic acids as formaldehyde-free durable press finishing agents. Text Res J. 58(8):480–486. doi:10.1177/004051758805800809.
  • Welch CM, Peters JG. 1997a. Text. Chem Color. 29(3):22.
  • Welch CM, Peters JG. 1997b. Text. Chem Color. 29(10):33.
  • Welch CM, Peters JG. 2000. Additives for improved whiteness and DP performance with citric acid finishing. Text Chem Color Am Dyest Report. 32(10):37–41.
  • Weyerhaeuser Company. 2001. High bulk cellulosic fibers crosslinked with malic acid and process for making the same.
  • Widsten P, Dooley N, Parr R, Capricho J, Suckling I. 2014. Citric acid crosslinking of paper products for improved high-humidity performance. Carbohydr Polym. 101:998–1004. doi:10.1016/j.carbpol.2013.10.002.
  • Wu H, Wang P, Wang Z, Sun Y, Li C, Dong Y. 2021. Preparation of EDTA modified cotton fiber iron complex and catalytic properties for aqueous Cr(VI) reduction and dye degradation. Water Pract Technol. 16(3):1000–1011. doi:10.2166/wpt.2021.047.
  • Xie Y, Fu Q, Wang Q, Xiao Z, Militz H. 2013. Effects of chemical modification on the mechanical properties of wood. Eur J Wood Wood Prod. 71(4):401–416. doi:10.1007/s00107-013-0693-4.
  • Yang CQ. 1993. Infrared spectroscopy studies of the effects of the catalyst on the ester cross-linking of cellulose by poly(carboxylic acids). J Appl Polym Sci. 50(12):2047–2053. doi:10.1002/app.1993.070501202.
  • Yang CQ, Gu X. 2001. Polymerization of maleic acid and itaconic acid studied by FT-Raman spectroscopy. J Appl Polym Sci. 81(1):223–228. doi:10.1002/app.1432.
  • Yang CQ, Lu Y. 1999. In-situ Polymerization of Maleic Acid and Itaconic Acid and Crosslinking of Cotton Fabric. Text Res J. 69(10):782–789. doi:10.1177/00405175990601013.
  • Yang CQ, Wang X, Kang I-S. 1997. Ester Crosslinking of Cotton Fabric by Polymeric Carboxylic Acids and Citric Acid. Text Res J. 67(5):334–342. doi:10.1177/004051759706700505.
  • Yao W, Wang B, Ye T, Yang Y. 2013. Durable Press Finishing of Cotton Fabrics with Citric Acid: Enhancement of Whiteness and Wrinkle Recovery by Polyol Extenders. Ind. Eng. Chem. Res. 52(46):16118–16127. doi:10.1021/ie402747x.
  • Ye T, Wang B, Liu J, Chen J, Yang Y. 2015. Quantitive analysis of citric acid/sodium hypophosphite modified cotton by HPLC and conductometric titration. Carbohydr Polym. 121:92–98. doi:10.1016/j.carbpol.2014.12.028.
  • Zoldners J, Kiseleva T. 2013. Modification of hemicelluloses with polycarboxylic acids. Holzforschung. 5(67):567–571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.