393
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

Two decades of fire activity over the PEEX domain: a look from space, with contribution from models and ground-based measurements

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 350-396 | Received 01 Sep 2023, Accepted 06 Feb 2024, Published online: 26 Feb 2024

References

  • Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry & Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011
  • Andreae, M. O. (1991). Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic, and biospheric implications (pp. 3–21). MIT Press.
  • Andreae, M. O. (2011). Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmospheric Chemistry & Physics, 19(13), 8523–8546. https://doi.org/10.5194/acp-19-8523-2019
  • Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276, 1052–1058. https://doi.org/10.1126/science.276.5315.1052
  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. https://doi.org/10.1029/2000GB001382
  • Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., & Tripathi, S. N. (2011). Inferring absorbing organic carbon content from AERONET data. Atmospheric Chemistry & Physics, 11(1), 215–225. https://doi.org/10.5194/acp-11-215-2011
  • Boersma, K. F., Eskes, H. J., Dirksen, R.J., van der A R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., & Brunner, D. (2011). An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 4, 1905–1928. https://doi.org/10.5194/amt-4-1905-2011
  • Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, J. R. Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., & Bucsela, E. J. (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry & Physics, 7, 2103–2118. https://doi.org/10.5194/acp-7-2103-2007
  • Boersma, K. F., Jacob, D. J., Bucsela, E. J., Perring, A. E., Dirksen, R., van der A, J. R. Yantosca, R. M., Park, R. J., Wenig, M. O., Bertram, T. H., & Cohen, R. C. (2008). Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico. Atmospheric Environment, 42(19), 4480–4497. https://doi.org/10.1016/j.atmosenv.2008.02.004
  • Bondur, V. G., Gordo, K. A., Voronova, O. S., Zima, A. L., & Feoktistova, N. V. (2023). Intense wildfires in Russia over a 22-year period according to satellite data. Fire, 6, 99. https://doi.org/10.3390/fire6030099
  • Chakrabarty, R. K., Shetty, N. J., Thind, A. S., Beeler, P., Sumlin, B. J., Zhang, C., Liu, P., Wagner, K., Adachi, N. L., Schwarz, J. P., Ahern, A., Sedlacek, A., III, Lambe, J., Daube, A., Lyu, C., Liu, M., Herndon, C., Onasch, S., B, T., & Mishra, R. (2023). Shortwave absorption by wildfire smoke dominated by dark brown carbon. Nature Geoscience, 16(8), 683–688. https://doi.org/10.1038/s41561-023-01237-9
  • Chen, Y., & Bond, T. C. (2010). Light absorption by organic carbon from wood combustion. Atmospheric Chemistry & Physics, 10, 1773–1787. https://doi.org/10.5194/acp-10-1773-2010
  • Chubarova, N., Nezval’, Y., Sviridenkov, I., Smirnov, A., & Slutsker, I. (2012, summer). Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmospheric Measurement Techniques, 5(3), 557–568. https://doi.org/10.5194/amt-5-557-2012
  • Compernolle, S., Verhoelst, T., Pinardi, G., Granville, J., Hubert, D., Keppens, A., Niemeijer, S., Rino, B., Bais, A., Beirle, S., Boersma, F., Burrows, J. P., De Smedt, I., Eskes, H., Goutail, F., Hendrick, F., Lorente, A., Pazmino, A. … Lambert, J.-C. (2020). Validation of aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: The role of measurement and comparison uncertainties. Atmospheric Chemistry & Physics, 20(13), 8017–8045. https://doi.org/10.5194/acp-20-8017-2020
  • Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669–1678. https://doi.org/10.1126/science.250.4988.1669
  • Deeter, M., Francis, G., Gille, J., Mao, D., Martínez-Alonso, S., Worden, H., Ziskin, D., Drummond, J., Commane, R., Diskin, G., & McKain, K. (2022). The MOPITT version 9 CO product: Sampling enhancements and validation. Atmospheric Measurement Techniques, 15(8), 2325–2344. https://doi.org/10.5194/amt-15-2325-2022
  • de Groot, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M., & Newbery, A. (2013). A comparison of Canadian and Russian boreal forest fire regimes. Forest Ecology and Management, 294, 23–34. https://doi.org/10.1016/j.foreco.2012.07.033
  • de Leeuw, G., Fan, C., Li, Z., Dong, J., Li, Y., Ou, Y., & Zhu, S. (2022). Spatiotemporal variation and provincial scale differences of the AOD across China during 2000–2021. Atmospheric Pollution Research, 13(4), 101359. ISSN 1309-1042. https://doi.org/10.1016/j.apr.2022.101359
  • Denman, K. L., Brasseur, A., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., & Zhang, X.: Couplings between changes in the climate system and biogeochemistry, in: climate change 2007: the physical science basis, contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, ISBN 978-0521705967, (2007).
  • de Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F., Chan, K.-L., Donner, S., Eichmann, K.-U., Hedelt, P., Hendrick, F., Irie, H., Kumar, V., Lambert, J.-C., Langerock, B., Lerot, C., Liu, C. … Van Roozendael, M. (2021). Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmospheric Chemistry & Physics, 21(16), 12561–12593. https://doi.org/10.5194/acp-21-12561-2021
  • Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol. Journal of Geophysical Research, 104(D24), 31333–31350. https://doi.org/10.1029/1999JD900923
  • Edwards, D. P., Emmons, L. K., Hauglustaine, D. A., Chu, A., Gille, J. C., Kaufman, Y. J., Petron, G., Yurganov, L. N., Giglio, L., Deeter, M. N., Yudin, V., Ziskin, D. C., Warner, J., Lamarque, J.-F., Francis, G. L., Ho, S. P., Mao, D., Chen, J., Grechko, E. I., & Drummond, J. R. (2004). Observations of carbon monoxide and aerosols from the terra satellite: Northern Hemisphere variability. Journal of Geophysical Research, 109(D24), D24202. https://doi.org/10.1029/2004JD004727
  • Elansky, N., Mokhov, I., Belikov, I., Berezina, E., Elokhov, A., Ivanov, V., Pankratova, N., Postylyakov, O., Safronov, A., Skorokhod, A., & Shumsky, R. (2011). Gas composition of the surface air in Moscow during the extreme summer of 2010. Doklady Earth Sciences, 437(1), 357–362. https://doi.org/10.1134/S1028334X11030020
  • Elvidge, C. D., Zhizhin, M., Hsu, F.-C., & Baugh, K. E. (2013). VIIRS nightfire: Satellite pyrometry at night. Remote Sensing, 5(9), 4423–4449. https://doi.org/10.3390/rs5094423
  • Fokeeva, E., Safronov, A., Rakitin, V., Yurganov, L., Grechko, E., & Shumskii, R. (2011). Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions. Izvestiya, Atmospheric and Oceanic Physics, 47(6), 682–698. https://doi.org/10.1134/S0001433811060041
  • Frédéric, A., Hugh, E., Mollicone, D., & Beuchle, R. (2008). The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philosophical Transactions of the Royal Society of London, B363(1501), 2329–2337. https://doi.org/10.1098/rstb.2007.2203
  • Freeborn, P. H., Wooster, M. J., & Roberts, G. (2011). Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa. Remote Sensing of Environment, 115(2), 475–489. https://doi.org/10.1016/j.rse.2010.09.017
  • Freeborn, P. H., Wooster, M. J., Roy, D. P., & Cochrane, M. A. (2014). Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophysical Research Letters, 41(6), 1988–1994. https://doi.org/10.1002/2013GL059086
  • Gatebe, C., Ichoku, C., Poudyal, R., Roman, M. O., & Wilcox, E. (2014). Surface albedo darkening from wildfires in northern sub-saharan Africa. Environmental Research Letters, 9(6), 065003. https://doi.org/10.1088/1748-9326/9/6/065003
  • Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. (2003). J.: An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282. https://doi.org/10.1016/S0034-4257(03)00184-6
  • Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054
  • Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., & Lyapustin, A. I. (2019). Advancements in the Aerosol Robotic Network (AERONET) version 3 database – automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmospheric Measurement Techniques, 12(1), 169–209. https://doi.org/10.5194/amt-12-169-2019
  • Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., & Yokelson, R. J. (2015). Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmospheric Chemistry & Physics, 15(24), 13915–13938. https://doi.org/10.5194/acp-15-13915-2015
  • Golitsyn, G. S., Gorchakov, G. I., Grechko, E. I., Semoutnikova, E. G., Rakitin, V. S., Fokeeva, E. V., Karpov, A. V., Kurbatov, G. A., Baikova, E. S., & Safrygina, T. P. (2012). Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010. Doklady Earth Sciences, 441(2), 1666–1672. https://doi.org/10.1134/S1028334X11120014
  • González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., & Suleiman, R. (2015). Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 8, 19–32. https://doi.org/10.5194/amt-8-19-2015
  • Gonzi, S., Palmer, P. I., Barkley, M. P., De Smedt, I., & Van Roozendael, M. (2011). Biomass burning emission estimates inferred from satellite column measurements of HCHO: Sensitivity to co-emitted aerosol and injection height. Geophysical Research Letters, 38(14), L14807. https://doi.org/10.1029/2011GL047890
  • Grebner, D. L., Bettinger, P., & Siry, J. (2013). Introduction to forestry and natural resources. Academic Press.
  • Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., & Blankenship, D. D. (2019). The climate data toolbox for MATLAB. Geochemistry Geophysics Geosystems, 20(7), 3774–3781. https://doi.org/10.1029/2019GC008392
  • Griffin, D., McLinden, C. A., Dammers, E., Adams, C., Stockwell, C. E., Warneke, C., Bourgeois, I., Peischl, J., Ryerson, T. B., Zarzana, K. J., Rowe, J. P., Volkamer, R., Knote, C., Kille, N., Koenig, T. K., Lee, C. F., Rollins, D., Rickly, P. S. … Makar, P. (2021). Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: Methodology and validation. Atmospheric Measurement Techniques, 14(12), 7929–7957. https://doi.org/10.5194/amt-14-7929-2021
  • Groisman, P., & Soja, A. J. (2009). Ongoing climatic change in Northern Eurasia: Justification for expedient research. Environmental Research Letters, 4(4), 045002. 10.1088/1748-9326/4/4/045002
  • Hall, J. V., Argueta, F., Zubkova, M., Chen, Y., Randerson, J. T., & Giglio, L. 2024. GloCAB: global cropland burned area from mid-2002 to 2020. Earth System Science Data discussion, 16, 867–885. 10.5194/essd-16-867-2024
  • Hall, J. V., Zibtsev, S. V., Giglio, L., Skakun, S., Myroniuk, V., Zhuravel, O., Goldammer, J. G., & Kussul, N. (2021). Environmental and political implications of underestimated cropland burning in Ukraine. Environmental Research Letters, 16(6), 064019. https://doi.org/10.1088/1748-9326/abfc04
  • Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16, 4. https://doi.org/10.1186/s42408-019-0062-8
  • Hawbaker, T. J., Radeloff, V. C., Syphard, A. D., Zhu, Z., & Stewart, S. I. (2008). Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 112(5), 2656–2664. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2007.12.008
  • Hayasaka, H. (2021). Rare and extreme wildland fire in Sakha in 2021. Atmosphere, 12(12), 1572. https://doi.org/10.3390/atmos12121572
  • He, Q., Geng, F., Li, C., Mu, H., Zhou, G., Liu, X., Gao, W., Wang, Y., & Cheng, T. (2018). Long-term variation of satellite-based PM2.5 and influence factors over East China. Scientific Report, 8(1), 11764. https://doi.org/10.1038/s41598-018-29366-x
  • He, Q., Qin, K., Cohen, J. B., Loyola, D., Li, D., Shi, J., & Xue, Y. (2020). Spatially and temporally coherent reconstruction of tropospheric NO2 over China combining OMI and GOME-2B measurements. Environmental Research Letters, 15(12), 125011. https://doi.org/10.1088/1748-9326/abc7df
  • Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET — a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5
  • Huang, S., Siegert, F., Goldammer, J. G., & Sukhinin, A. I. (2009). Satellite-derived 2003 wildfires in southern Siberia and their potential influence on carbon sequestration. International Journal of Remote Sensing, 30(6), 1479–1492. https://doi.org/10.1080/01431160802541549
  • Huemmrich, K. F., Gamon, J. A., Tweedie, C. E., Campbell, P. K. E., Landis, D. R., & Middleton, E. M. (2013). Arctic tundra vegetation functional types based on photosynthetic physiology and optical properties. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 6(2), 265–275. https://doi.org/10.1109/JSTARS.2013.2253446
  • Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., & Yu, Z. (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences U S A, 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117
  • Huijnen, V., Flemming, J., Kaiser, J. W., Inness, A., Leitao, J., Heil, A., Eskes, H. J., Schultz, M. G., Benedetti, A., Hadji-Lazaro, J., Dufour, G., & Eremenko, M. (2012). Hindcast experiments of tropo-spheric composition during the summer 2010 fires over western Russia. Atmospheric Chemistry & Physics, 12(9), 4341–4364. https://doi.org/10.5194/acp-12-4341-2012
  • Ichoku, C., Giglio, L., Wooster, M. J., & Remer, L. A. (2008). Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, 112(6), 2950–2962. https://doi.org/10.1016/j.rse.2008.02.009
  • Ichoku, C., Kahn, R. A., & Chin, M. (2012). Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 111, 1–28. https://doi.org/10.1016/j.atmosres.2012.03.007
  • Ichoku, C., & Kaufman, Y. (2005). J.: A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience & Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328
  • Innes, J. L., Beniston, M., & Verstraete, M. M. (2000). Biomass burning and its inter-relationship with the climate system. Kluwer Acad.
  • Jaffe, D., Bertschi, I., Jaegle, L., Novelli, P., Reid, J. S., Tanimoto, H., Vingarzan, R., & Westphal, D. L. (2004). Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophysical Research Letters, 31(16), L16106. https://doi.org/10.1029/2004GL020093
  • Jin, Q. F., Wang, W. W., Zheng, W. X., Innes, J. L., Wang, G. Y., & Guo, F. T. (2022). Dynamics of pollutant emissions from wildfires in China. Journal of Environmental Management, 318, 115499. https://doi.org/10.1016/j.jenvman.2022.115499
  • Johnson, M. S., Strawbridge, K., Knowland, K. E., Keller, C., & Travis, M. (2021). Long-range transport of Siberian biomass burning emissions to North America during FIREX-AQ. Atmospheric Environment, 252, 118241. https://doi.org/10.1016/j.atmosenv.2021.118241
  • Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and regional trends and drivers of fire under climate change. Review of Geophysics, 60(3), e2020RG000726. https://doi.org/10.1029/2020RG000726
  • Jung, J. S., & Kang, J. H. (2021). Postharvest burning of crop residues in home stoves in a rural site of Daejeon, Korea: Its impact to atmospheric carbonaceous aerosol. Atmosphere, 12, 257. https://doi.org/10.3390/atmos12020257
  • Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., & Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. https://doi.org/10.1016/S0034-4257(02)00076-7
  • Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. https://doi.org/10.1016/S0034-4257(02)00076-7
  • Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H., & Gabriela Schaepman-Strub, G. (2020). Arctic oscillation–induced temperature increase drives earlier snow melting and fire activity over southeastern Siberia. Science Advances, 6(2), eaax3308. https://doi.org/10.1126/sciadv.aax3308
  • Kramer, L. J., Leigh, R. J., Remedios, J. J., & Monks, P. S. (2008). Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. Journal of Geophysical Research, 113(D16), D16S39. https://doi.org/10.1029/2007JD009168
  • Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J., Chan, K. L., Wenig, M., & Zara, M. (2017). The version 3 OMI NO2 standard product. Atmospheric Measurement Techniques, 10, 3133–3149. https://doi.org/10.5194/amt-10-3133-2017 9
  • Kulmala, M., Lappalainen, H. K., Petäjä, T., Kurten, T., Kerminen, V.-M., Viisanen, Y., Hari, P., Sorvari, S., Bäck, J., Bondur, V., Kasimov, N., Kotlyakov, V., Matvienko, G., Baklanov, A., Guo, H. D., Ding, A., Hansson, H.-C., & Zilitinkevich, S. (2015). Introduction: The Pan-Eurasian experiment (PEEX) – multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry & Physics, 15(22), 13085–13096. https://doi.org/10.5194/acp-15-13085-2015
  • Lappalainen, H. K., Kerminen, V.-M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J., Vihma, T., Alekseychik, P., Andreae, M. O., Arnold, S. R., Arshinov, M., Asmi, E., Belan, B., Bobylev, L., Chalov, S., Cheng, Y., Chubarova, N. … Kulmala, M. (2016). Pan-Eurasian experiment (peex): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry & Physics, 16(22), 14421–14461. https://doi.org/10.5194/acp-16-14421-2016
  • Lappalainen, H. K., Petäjä, T., Kujansuu, J., Kerminen, V.-M., Shvidenko, A., Bäck, J., Vesala, T., Vihma, T., de Leeuw, G., Lauri, A., Ruuskanen, T., Flint, M., Zaitseva, N., Spracklen, M., Arshinov, D., Lihavainen, S., Arnold, S., Juhola, H. … Kulmala, M. (2014). Pan-Eurasian Experiment (PEEX) – a research initiative meeting the grand challenges of the changing environment of the northern Pan-Eurasian arctic-boreal areas. J Geography Environment Sustainability, 7(2), 13–48. https://doi.org/10.24057/2071-9388-2014-7-2-13-48
  • Lappalainen, H. K., Petäjä, T., Vihma, T., Räisänen, J., Baklanov, A., Chalov, S., Esau, I., Ezhova, E., Leppäranta, M., Pozdnyakov, D., Pumpanen, J., Andreae, M. O., Arshinov, M., Asmi, E., Bai, J., Bashmachnikov, I., Belan, B., Bianchi, F. … Kulmala, M. (2022). Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a pan-Eurasian experiment (PEEX) programme perspective. Atmospheric Chemistry & Physics, 22, 4413–4469. https://doi.org/10.5194/acp-22-4413-2022
  • Laumbach, R. J., & Kipen, H. M. (2012). Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. The Journal of Allergy and Clinical Immunology, 129(1), 3–11. ISSN 0091-6749. https://doi.org/10.1016/j.jaci.2011.11.021
  • Lavoué, D., Liousse, C., Cachier, H., Stocks, B., & Goldammer, J. (2000). Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. Journal of Geophysical Research: Atmospheres, 105(D22), 26871–26890. https://doi.org/10.1029/2000JD900180
  • Leino, K., Riuttanen, L., Nieminen, T., Dal Maso, M., Väänänen, R., Pohja, T., Keronen, P., Jarvi, L., Aalto, P., Virkkula, A., Kerminen, V.-M., Petaja, T., & Kulmala, M. (2014). Biomass-burning smoke episodes in Finland from eastern European wildfires. Boreal Environment Research, 19, 275–292. https://helda.helsinki.fi/server/api/core/bitstreams/8729c483-9866-49e4-a647-9cfdcefdab41/content
  • Lemprière, T. C., Kurz, W. A., Hogg, E. H., Schmoll, C., Rampley, G. J., Yemshanov, D., McKenney, D. W., Gilsenan, R., Beatch, A., Blain, D., Bhatti, J. S., & Krcmar, E. (2013). Canadian boreal forests and climate change mitigation. Environmental Reviews, 21(4), 293–321. https://doi.org/10.1139/er-2013-0039
  • Levelt, P. F., Oord, G. H. J., van den Dobber, M. R., Mälkki, A., Visser, H., Vries, J., de Stammes, P., Lundell, J., & Saari, H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093–1101. https://doi.org/10.1109/TGRS.2006.872333
  • Liao, J., Wolfe, G. M., Hannun, R. A., Clair, J. M. S., Hanisco, T. F., Gilman, J., Lamplugh, A., Selimovic, V., Diskin, G. S., Nowak, J. B., Halliday, H., DiGangi, J. P., Hall, S. R., Ullmann, K., Holmes, C. D., Fite, C., Agastra, A., Ryerson, T. B. … Hornbrook, R. S. (2022). Brown. In eds S., Womack, C., Robinson, M., Washenfelder, R., Veres, P, & Neuman, J., A.: Formaldehyde evolution in US wildfire plumes during the fire influence on regional to Global Environments and air quality experiment (FIREX-AQ), atmospheric chemistry and physics. https://doi.org/10.5194/acp-21-18319-2021
  • Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., & He, K. (2017). Anthropogenic emission inventories in China: A review. National Science Review, 4(6), 834–866. https://doi.org/10.1093/nsr/nwx150
  • Lin, S., Huang, X., Gao, J., & Ji, J. (2021). Extinction of Wood Fire: A Near-Limit Blue Flame Above Hot Smoldering Surface. Fire Technology, 58(1), 415–434. https://doi.org/10.1007/s10694-021-01146-6
  • Liu, C., Beirle, S., Butler, T., Liu, J., Hoor, P., Jöckel, P., Penning de Vries, M., Pozzer, A., Frankenberg, C., Lawrence, M. G., Lelieveld, J., Platt, U., & Wagner, T. (2011). Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. Atmospheric Chemistry & Physics, 11, 6083–6114. https://doi.org/10.5194/acp-11-6083-2011
  • Liu, Y., Scott, G., & Warren, H. (2014). Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. Forest Ecology and Management, 317, 80–96. https://doi.org/10.1016/j.foreco.2013.02.020
  • Li, F., Zhang, X., Kondragunta, S., & Csiszar, I. (2018). Comparison of fire radiative power estimates from VIIRS and MODIS observations. Journal of Geophysical Research: Atmosphere, 123(9), 4545–4563. https://doi.org/10.1029/2017JD027823
  • Lu, Z., & Sokolik, I. N. (2018). The impacts of smoke emitted from Boreal Forest Wildfires on the High Latitude Radiative Energy Budget—A case study of the 2002 Yakutsk Wildfires. Atmosphere, 9, 410. https://doi.org/10.3390/atmos9100410
  • Mack, M. C., Walker, X. J., Johnstone, J. F., Alexander, H. D., Melvin, A. M., Jean, M., & Miller, S. N. (2021). Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science, 372(6539), 280–283. https://doi.org/10.1126/science.abf390
  • Mahowald, N. M., Artaxo, P., Baker, A. R., Jickells, T. D., Okin, G. S., Randenson, J. T., & Townsend, A. R. (2005). Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 19(4), GB4030. https://doi.org/10.1029/2005GB002541
  • Marbach, T., Beirle, S., Liu, C., Platt, U., & Wagner, T.: Biomass burning emissions from satellite observations: Synergistic use of formaldehyde (HCHO), fire counts, and surface temperature, Proc. SPIE 7089, Remote Sensing of Fire: Science and Application, 70890J, https://doi.org/10.1117/12.793654. (2008).
  • Markowicz, K. M., Chilinski, M. T., Lisok, J., Zawadzka, O., Stachlewska, I. S., Janicka, L., Rozwadowska, A., Makuch, P., Pakszys, P., Zielinski, T., Petelski, T., Posyniak, M., Pietruczuk, A., Szkop, A., & Westphal, D. L. (2016). Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe. Journal of Aerosol Sciences 101, 156–173. inJuly 2013. https://doi.org/10.1016/j.jaerosci.2016.08.006.
  • May, N. W., Bernays, N., Farley, R., Zhang, Q., & Jaffe, D. A. (2023). Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor observatory: Larger and black carbon (BC)-dominant particles transported from Siberian wildfires. Atmospheric Chemistry & Physics, 23, 2747–2764. https://doi.org/10.5194/acp-23-2747-2023
  • Meinander, O., Kontu, A., Kouznetsov, R., & Sofiev, M. (2020). Snow samples combined with long-range transport modeling to reveal the origin and temporal variability of black carbon in seasonal snow in Sodankylä (67°N. Frontiers in Earth Sciences, Cryospheric Sciences, 8. https://doi.org/10.3389/feart.2020.00153
  • Mielonen, T., Portin, H., Komppula, M., Leskinen, A., Tamminen, J., Ialongo, I., Hakkarainen, J., Lehtinen, K., & Arola, A. (2012). Biomass burning aerosols observed in EasternFinland during the Russian wildfires in summer 2010 –part 2. Remote Sensing of Atmospheric Environment, 47, 279–287. https://doi.org/10.1016/j.atmosenv.2011.07.016
  • MOPITT user guide. 2018. https://www2.acom.ucar.edu/sites/default/files/documents/v8_users_guide_201812.pdf, last access 25.08.2023.
  • Ngoc Trieu, T. T., Morino, I., Uchino, O., Tsutsumi, Y., Izumi, T., Sakai, T., Shibata, T., Ohyama, H., & Nagahama, T. (2023, April 1). Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18-20 May 2016. Environmental Pollutions, 322, 121129. https://doi.org/10.1016/j.envpol.2023.121129
  • Oh, H. R., Ho, C. H., Kim, J., Chen, D., Lee, S., Choi, Y. S., Chang, L. S., & Song, C. K. (2015). Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmospheric Environment, 109, 23–30. https://doi.org/10.1016/j.atmosenv.2015.03.005
  • Paris, J.-D., Stohl, A., Nédélec, P., Arshinov, M. Y., Panchenko, M. V., Shmargunov, V. P., Law, K. S., Belan, B. D., & Ciais, P. (2009). Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements. Atmospheric Chemistry & Physics, 9, 9315–9327. https://doi.org/10.5194/acp-9-9315-2009
  • PEEX science plan, https://www.atm.helsinki.fi/peex/images/PEEX_Science_Plan.pdf, last access 25.08.2023.
  • Péré, J. C., Mallet, M., Bessagnet, B., & Pont, V. (2009). Evidence of the aerosol core-shell mixing state over Europe during the heat wave of summer 2003 by using CHIMERE simulations and AERONET inversions. Geophysical Research Letters, 36(9), L09807. https://doi.org/10.1029/2009GL037334
  • Petäjä, T., Ganzei, K. S., Lappalainen, H. K., Tabakova, K., Makkonen, R., Räisänen, J., Chalov, S., Kulmala, M., Zilitinkevich, S., Baklanov, P. Y., Shakirov, R. B., Mishina, N. V., Egidarev, E. G., & Kondrat’ev, I. I. (2021). Research agenda for the Russian far east and utilization of multi-platform comprehensive environmental observations in. International Journal of Digital Earth, 14(3), 311–337 27 p, 2021. https://doi.org/10.1080/17538947.2020.1826589
  • Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J.-F., Thompson, A. M., & Yorks, J. E. (2008). Analysis of the Summer 2004 ozone budget over the United States using inter- continental transport experiment ozonesonde network study (ions) observations and model of ozone and related tracers (MOZART-4) simulations. Journal of Geophysical Research, 113(D23), D23306. https://doi.org/10.1029/2008JD010190
  • Ponomarev, E. I., Kharuk, V. I., & Ranson, K. J. (2016). Wildfires dynamics in Siberian larch forests. Forests, 7(12), 125. https://doi.org/10.3390/f7060125
  • Post, E., & Mack, M. C. (2022). Arctic wildfires at a warming threshold. Science, 378, 470–471. https://doi.org/10.1126/science.ade9583
  • Proestakis, E., Amiridis, V., Marinou, E., Georgoulias, A. K., Solomos, S., Kazadzis, S., Chimot, J., Che, H., Alexandri, G., Binietoglou, I., Daskalopoulou, V., Kourtidis, K. A., de Leeuw, G., & van der A, J. R. (2018). Nine-year spatial and temporal evolution of desert dust aerosols over south and East Asia as revealed by CALIOP. Atmospheric Chemistry & Physics, 18, 1337–1362. https://doi.org/10.5194/acp-18-1337-2018
  • Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences, 117(G4), G04012. https://doi.org/10.1029/2012JG002128
  • Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 1–10. https://doi.org/10.1038/s43247-022-00498-3
  • Reid, J. S., Koppmann, R., Eck, T. F., & Eleuterio, D. P. (2005). A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry & Physics, 5, 799–825. https://doi.org/10.5194/acp-5-799-2005
  • Rein, G., & Huang, X. (2021). Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Current Opinion in Environmental Science & Health 24, 100296. ISSN 2468-5844. https://doi.org/10.1016/j.coesh.2021.100296.
  • Reisen, F., Duran, S. M., Flannigan, M., Elliot, C., & Rideout, K. (2015). Wildfire smoke and public health risk. International Journal of Wildland Fire, 24(8), 1029–1044. https://doi.org/10.1071/WF15034
  • R’Honi, Y., Clarisse, L., Clerbaux, C., Hurtmans, D., Duflot, V., Turquety, S., Ngadi, Y., & Coheur, P.-F. (2013). Exceptional emissions of NH3 and HCOOH in the 2010 Russian wildfires. Atmospheric Chemistry & Physics, 13(8), 4171–4181. https://doi.org/10.5194/acp-13-4171-2013
  • Romanenkov, V., Rukhovitch, D., Koroleva, P., & McCarty, J. L. (2014). Estimating black carbon emissions from agricultural burning. In Mueller, L., Lischeid, G., & Saparov, A. (Eds.), Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of central Asia (pp. 347–364). Springer.
  • Saarikoski, S., & Hillamo, R. (2012). Wildfires as a Source of Aerosol Particles transported to the northern European regions. In Viana M. (Ed.), Urban Air Quality in Europe. The handbook of environmental chemistry, Vol. 26. Springer. https://link.springer.com/chapter/10.1007/698_2012_169
  • Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., & Ostrow, H. (1989). MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145–153. https://doi.org/10.1109/36.20292
  • Schreier, S. F., Richter, A., Schepaschenko, D., Shvidenko, A., Hilboll, A., & Burrows, J. P. (2015). Differences in satellite-derived NOx emission factors between Eurasian and North American boreal forest fires. Atmospheric Environment 121, 55–65. ISSN 1352-2310. https://doi.org/10.1016/j.atmosenv.2014.08.071.
  • Schuster, G. L., Dubovik, O., & Arola, A. (2016). Remote sensing of soot carbon – part 1: Distinguishing different absorbing aerosol species. Atmospheric Chemistry & Physics, 16(3), 1565–1585. https://doi.org/10.5194/acp-16-1565-2016
  • Schuster, G. L., Dubovik, O., Holben, B. N., & Clothiaux, E. E. (2005). Inferring black carbon content and specific absorption from aerosol robotic network (AERONET) aerosol retrievals. Journal of Geophysical Research, 110(D10), D10S17. https://doi.org/10.1029/2004JD004548
  • Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). John Wiley & Sons Inc.
  • Shen, L., Jacob, D. J., Zhu, L., Zhang, Q., Zheng, B., Sulprizio, M. P., Li, K., De Smedt, I., González Abad, G., Cao, H., Fu, T. M., & Liao, H. (2019). The 2005–2016 Trends of Formaldehyde Columns over China observed by satellites: Increasing anthropogenic emissions of volatile organic compounds and decreasing agricultural fire emissions. Geophysical Research Letters, 46(8), 4468–4475. https://doi.org/10.1029/2019gl082172
  • Shvidenko, A., Shchepashchenko, D., Vaganov, E., Sukhinin, A., Maksyutov, S., McCallum, I., & Lakyda, I. (2011). Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Doklady Earth Sciences, 441(2), 1678–1682. https://doi.org/10.1134/S1028334X11120075
  • Silva, S. J., & Arellano, A. (2017). Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2. Remote Sensing, 9, 744. https://doi.org/10.3390/rs9070744
  • Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., & Blake, D. R. (2011). Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN. CO2, CO, NO2, NO, HCN and CH3CN, Atmospheric Chemistry and Physics, 11(13), 6445–6463. https://doi.org/10.5194/acp-11-6445-2011
  • Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., & Lyapustin, A. (2020). The AERONET version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to version 2. Atmospheric Measurement Techniques, 13(6), 3375–3411. https://doi.org/10.5194/amt-13-3375-2020
  • Soares, J., Sofiev, M., & Hakkarainen, J. (2015). Uncertainties of wild-land fires emission in AQMEII phase 2 case study, atmospheric envinronment. Atmospheric Environment, 115, 361–370. https://doi.org/10.1016/j.atmosenv.2015.01.068
  • Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J., & Kukkonen, J. (2009). An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric Chemistry & Physics, 9(18), 6833–6847. https://doi.org/10.5194/acp-9-6833-2009
  • Sogacheva, L., de Leeuw, G., Rodriguez, E., Kolmonen, P., Georgoulias, A. K., Alexandri, G., Kourtidis, K., Proestakis, E., Marinou, E., Amiridis, V., Xue, Y., & van der A, J. R. (2018). Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017. Atmospheric Chemistry & Physics, 18, 11389–11407. https://doi.org/10.5194/acp-18-11389-2018
  • Sogacheva, L., Popp, T., Sayer, A. M., Dubovik, O., Garay, M. J., Heckel, A., Hsu, N. C., Jethva, H., Kahn, R. A., Kolmonen, P., Kosmale, M., de Leeuw, G., Levy, R. C., Litvinov, P., Lyapustin, A., North, P., Torres, O., & Arola, A. (2020). Merging regional and global aerosol optical depth records from major available satellite products. Atmospheric Chemistry & Physics, 20(4), 2031–2056. https://doi.org/10.5194/acp-20-2031-2020
  • Song, Y., Xing, C., Liu, C., Lin, J., Wu, H., Liu, T., Lin, H., Zhang, C., Tan, W., Ji, X., Liu, H., & Li, Q. (2023). Evaluation of transport processes over North China plain and yangtze river Delta using MAX-DOAS observations. Atmospheric Chemistry & Physics, 23(3), 1803–1824. https://doi.org/10.5194/acp-23-1803-2023
  • Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Lerot, C., Van Roozendael, M., Coheur, P.-F., Clerbaux, C., Boersma, K. F., van der A, J. R., & Song, Y. (2016). Substantial underestimation of post-harvest burning emissions in the North China plain revealed by multi-species space observations. Science Report, 6(32307). https://doi.org/10.1038/srep32307
  • Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazière, M., Vigouroux, C., Hendrick, F., George, M., Clerbaux, C., Coheur, P.-F., & Guenther, A. (2015). How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmospheric Chemistry & Physics, 15(20), 11861–11884. https://doi.org/10.5194/acp-15-11861-2015
  • Stohl, A., Berg, T., Burkhart, J. F., Fjǽraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., & Yttri, K. E. (2007). Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry & Physics, 7, 511–534. https://doi.org/10.5194/acp-7-511-2007
  • Su, W., Liu, C., Hu, Q., Zhao, S., Sun, Y., Wang, W., Zhu, Y., Liu, J., & Kim, J. (2019). Primary and secondary sources of ambient formaldehyde in the yangtze River Delta based on ozone mapping and profiler suite (OMPS) observations. Atmospheric Chemistry & Physics, 19, 6717–6736. https://doi.org/10.5194/acp-19-6717-2019
  • Sun, Y., Yin, H., Liu, C., Zhang, L., Cheng, Y., Palm, M., Notholt, J., Lu, X., Vigouroux, C., Zheng, B., Wang, W., Jones, N., Shan, C., Qin, M., Tian, Y., Hu, Q., Meng, F., & Liu, J. (2021). Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: Insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmospheric Chemistry & Physics, 21(8), 6365–6387. https://doi.org/10.5194/acp-21-6365-2021
  • Sun, K., Zhu, L., Cady-Pereira, K., Chan Miller, C., Chance, K., Clarisse, L., Coheur, P.-F., González Abad, G., Huang, G., Liu, X., Van Damme, M., Yang, K., & Zondlo, M. (2018). A physics-based approach to oversample multi-satellite, multispecies observations to a common grid. Atmospheric Measurement Techniques, 11(12), 6679–6701. https://doi.org/10.5194/amt-11-6679-2018
  • Szymankiewicz, K., Kaminski, J. W., & Struzewska, J. (2021). Application of Satellite Observations and air quality modelling to validation of NOx anthropogenic EMEP emissions inventory over Central Europe. Atmosphere, 12(11), 1465. https://doi.org/10.3390/atmos12111465
  • Tanimoto, H., Ikeda, K., Boersma, K. F., van der A, J. R. , & Garivait, S. (2015). Interannual variability of nitrogen oxides emissions from boreal fires in Siberia and Alaska during 1996-2011 as observed from space. Environmental Research Letters, 10, 065004. https://doi.org/10.1088/1748-9326/10/6/065004
  • Tan, W., Liu, C., Wang, S., Xing, C., Su, W., Zhang, C., Xia, C., Liu, H., Cai, Z., & Liu, J. (2018). Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data. Atmospheric Chemistry & Physics, 18(20), 15387–15402. https://doi.org/10.5194/acp-18-15387-2018
  • Tian, Y., Sun, Y., Borsdorff, T., Liu, C., Liu, T., Zhu, Y., Yin, H., & Landgraf, J. (2022). Quantifying CO emission rates of industrial point sources from tropospheric monitoring instrument observations. Environmental Research Letters, 17(1), 014057. https://doi.org/10.1088/1748-9326/ac3b1a
  • Tomshin, O., & Solovyev, V. (2022). Spatio-temporal patterns of wildfires in Siberia during 2001–2020. Geocarto International, 37(25), 7339–7357. https://doi.org/10.1080/10106049.2021.1973581
  • Tong, D., Cheng, J., Liu, Y., Yu, S., Yan, L., Hong, C., Qin, Y., Zhao, H., Zheng, Y., Geng, G., Li, M., Liu, F., Zhang, Y., Zheng, B., Clarke, L., & Zhang, Q. (2020). Dynamic projection of anthropogenic emissions in China: Methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmospheric Chemistry & Physics, 20, 5729–5757. https://doi.org/10.5194/acp-20-5729-2020
  • Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., Parker, D., Zalles, V., Lima, A., & Kommareddy, I. (2022). Global trends of forest loss due to fire from 2001. To 2019. Frontiers in Remote Sensing, 3, 825190. https://doi.org/10.3389/frsen.2022.825190
  • Urbieta, I. R., Zavala, G., Bedia, J., Gutiérrez, J. M., San Miguel-Ayanz, J., Camia, A., Keeley, J. E., & Moreno, J. M. (2015). Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA, environmental research letters. 10(11), 114013. https://doi.org/10.1088/1748-9326/10/11/114013
  • Vasileva, A., Moiseenko, K., Skorokhod, A., Belikov, I., Kopeikin, V., & Lavrova, O. (2017). Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations. Atmospheric Chemistry and Physics, 17(20), 12303–12325. https://doi.org/10.5194/acp-17-12303-2017
  • Venäläinen, A., Lehtonen, I., Laapas, M., Ruosteenoja, K., Tikkanen, O.-P., Viiri, H., Ikonen, V. P., & Peltoa, H. (2020). Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Global Change Biology, 26(8), 4178–4196. https://doi.org/10.1111/gcb.15183
  • Voronova, O. S., Zima, A. L., Kladov, V. L., & Cherepanova, E. V. (2020). Anomalous wildfires in Siberia in Summer. Izvestiya Atmospheric and Oceanic Physics, 56(9), 1042–1052. https://doi.org/10.1134/S000143382009025X
  • Wang, Z., Fang, K., & Yao, Q. (2022a). Fire history and its forcing in northeastern Asia boreal forests. Natural Hazards Research, 2(3), 166–171. https://doi.org/10.1016/j.nhres.2022.07.001
  • Wang, C., Huang, X.-F., Han, Y., Zhu, B., & He, L.-Y. (2017). Sources and potential photochemical roles of formaldehyde in an urban atmosphere in South China. Journal of Geophysical Research Atmospheres, 112(21), 934–11,947. https://doi.org/10.1002/2017JD027266
  • Wang, F., Maksyutov, S., Janardanan, R., Tsuruta, A., Ito, A., Morino, I., Yoshida, Y., Tohjima, Y., Kaise, J. W., Lan, X., Zhang, Y., Mammarella, I., Lavric, J. V., & Matsunaga, T. (2022). Atmospheric observations suggest methane emissions in north-eastern China growing with natural gas use. Science Report, 12(1), 18587. https://doi.org/10.1038/s41598-022-19462-4
  • Wan, N., Xiong, X., Kluitenberg, G. J., Hutchinson, J. M. S., Aiken, R., Zhao, H., & Lin, X. (2023). Estimation of biomass burning emission of NO2 and CO from 2019–2020 Australia fires based on satellite observations. Atmospheric Chemistry & Physics, 23, 711–724. https://doi.org/10.5194/acp-23-711-2023
  • Wei, J., Peng, Y., Mahmood, R., Sun, L., & Guo, J. (2019). Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products. Atmospheric Chemistry & Physics, 19, 7183–7207. https://doi.org/10.5194/acp-19-7183-2019
  • Witte, J. C., Douglass, A. R., da Silva, A., Torres, O., Levy, R., & Duncan, B. N. (2011). NASA A-Train and Terra observations of the 2010 Russian wildfires. Atmospheric Chemistry & Physics, 11, 9287–9301. https://doi.org/10.5194/acp-11-9287-2011
  • Witze, A. (2020). The Arctic is burning like never before — and that’s bad news for climate change. Nature, 585(7825), 336–337. https://doi.org/10.1038/d41586-020-02568-y
  • Wong, L. T., Mui, K. W., Chan, W. Y., & Hui, P. S. (2008). Residential Lifetime Exposure Risk of Formaldehyde in Residential Buildings in Hong Kong. Architectural Science Review, 51(1), 66–70. https://doi.org/10.3763/asre.2008.5109
  • Xia, X., Zong, X., & Sun, L. (2013). Exceptionally active agricultural fire season in mid-eastern China in June 2012 and its impact on the atmospheric environment. Journal of Geophysical Research Atmospheres, 118(17), 9889–9900. https://doi.org/10.1002/jgrd.50770
  • Yurganov, L., & Rakitin, V. (2022). Two decades of satellite observations of carbon monoxide confirm the increase in northern hemispheric wildfires. Atmosphere, 13, 1479. https://doi.org/10.3390/atmos13091479
  • Yurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., Gorchakov, G., Grechko, E., Hannon, S., Karpov, A., Ott, L., Semutnikova, E., Shumsky, R., & Strow, L. (2011). Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmospheric Chemistry & Physics, 11, 7925–7942. https://doi.org/10.5194/acp-11-7925-2011
  • Zara, M., Boersma, K. F., De Smedt, I., Richter, A., Peters, E., van Geffen, J. H. G. M., Beirle, S., Wagner, T., Van Roozendael, M., Marchenko, S., Lamsal, L. N., & Eskes, H. J. (2018). Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: Intercomparison, uncertainty characterisation, and trends. Atmospheric Measurement Techniques, 11(7), 4033–4058. https://doi.org/10.5194/amt-11-4033-2018
  • Zhang, L., Ding, S., Qian, W., Zhao, A., Zhao, S., Yang, Y., Weng, G., Tao, M., Chen, H., Zhao, S., & Wang, Z. (2022). The Impact of Long-Range Transport of Biomass Burning Emissions in Southeast Asia on Southern China. Atmosphere, 13(7), 1029. https://doi.org/10.3390/atmos13071029
  • Zhang, S., Lei, L., Sheng, M., Song, H., Li, L., Guo, K., Ma, C., Liu, L., & Zeng, Z. (2022). Evaluating anthropogenic CO2 bottom-up emission inventories using satellite observations from GOSAT and OCO-2. Remote Sensing, 14(19), 5024. https://doi.org/10.3390/rs14195024
  • Zhang, Y., Li, R., Min, Q., Bo, H., Fu, Y., Wang, Y., & Gao, Z. (2019). The controlling factors of atmospheric formaldehyde (HCHO) in Amazon as seen from satellite. Earth & Space Science, 6(6), 959–971. https://doi.org/10.1029/2019EA000627
  • Zhang, C., Li, Z., Zhao, W., Yao, Q., Wang, H., & Boguang Wang, B. (2022). Open biomass burning emissions and their contribution to ambient formaldehyde in Guangdong province, China. Science of the Total Environment, 838, 155904. Part 1 ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.155904
  • Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C., Chance, K., Apel, E. C., DiGangi, J. P., Fried, A., Hanisco, T. F., Hornbrook, R. S., Hu, L., Kaiser, J., Keutsch, F. N., Permar, W., Clair, S., M, J., & Wolfe, G. M. (2020). Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns. Atmospheric Chemistry & Physics, 20(20), 12329–12345. https://doi.org/10.5194/acp-20-12329-2020
  • Zvyaginstev, A. M., Blum, O. B., Glazkova, A. A., Kotel’nikov, S. N., Kuznetsova, I. N., Lapchenko, V. A., Lezina, E. A., Milller, E. A., Milyaev, V. A., Popikov, A. P., Semutnikova, E. G., Tarasova, O. A., & Shalygina, I. Y. (2011). Air pollution over European Russia and Ukraine under the hot summer conditions of 2010. Izvestiya Atmospheric and Oceanic Physics, 47(6), 699–707. https://doi.org/10.1134/S0001433811060168