595
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

Time series analysis of L-band PALSAR-2 images in Istanbul and Kocaeli, Turkey

ORCID Icon, &
Received 04 Oct 2023, Accepted 14 Feb 2024, Published online: 29 Feb 2024

References

  • Aimaiti, Y., Yamazaki, F., & Liu, W. (2018). Multi-sensor InSAR analysis of progressive land subsidence over the coastal city of Urayasu, Japan. Remote Sensing, 10(8), 1304. https://doi.org/10.3390/rs10081304
  • Akarvardar, S., Feigl, K. L., & Ergintav, S. (2009). Ground deformation in an area later damaged by an earthquake: Monitoring the avcilar district of Istanbul, Turkey, by satellite radar interferometry 1992–1999. Geophysical Journal International, 178(2), 976–988. https://doi.org/10.1111/j.1365-246X.2009.04126.x
  • ALOS-2/PALSAR-2 level 1.1/1.5/2.1/3.1 CEOS SAR product format description, Japan Aerospace Exploration Agency, May. (2014).
  • Aslan, G., Cakır, Z., Ergintav, S., Lasserre, C., & Renard, F. (2018). Analysis of secular ground motions in Istanbul from a long-term InSAR time-series (1992–2017). Remote Sensing, 10(3), 408. https://doi.org/10.3390/rs10030408
  • Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
  • Bull, W. B., & Poland, J. F. (1975). Land subsidence due to ground-water withdrawal in the los banos-kettleman city area, california: part. 3. interrelations of water-level change, change in aquifer-system thickness, and subsidence (Vol. 3). US Government Printing Office.
  • Chang, L., Dollevoet, R. P. B. J., & Hanssen, R. F. (2017). Nationwide railway monitoring using satellite SAR interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2), 596–604. https://doi.org/10.1109/JSTARS.2016.2584783
  • Chen, F., Lin, H., Li, Z., Chen, Q., & Zhou, J. (2012). Interaction between permafrost and infrastructure along the Qinghai–Tibet railway detected via jointly analysis of C-and L-band small baseline SAR interferometry. Remote Sensing of Environment, 123, 532–540. https://doi.org/10.1016/j.rse.2012.04.020
  • Chen, F., Zhou, W., Chen, C., & Ma, P. (2019). Extended D-TomoSAR displacement monitoring for Nanjing (China) city built structure using high-resolution TerraSAR/TanDEM-X and cosmo skyMed SAR data. Remote Sensing, 11(22), 2623. https://doi.org/10.3390/rs11222623
  • Cigna, F., Esquivel Ramírez, R., & Tapete, D. (2021). Accuracy of sentinel-1 PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sensing, 13(23), 4800. https://doi.org/10.3390/rs13234800
  • Ezquerro, P., Del Soldato, M., Solari, L., Tomás, R., Raspini, F., Ceccatelli, M., Fernández-Merodo, J. A., Casagli, N., & Herrera, G. (2020). Vulnerability assessment of buildings due to land subsidence using InSAR data in the ancient historical city of Pistoia (Italy). Sensors, 20(10), 2749. https://doi.org/10.3390/s20102749
  • Ezquerro, P., Tomás, R., Béjar-Pizarro, M., Fernández-Merodo, J. A., Guardiola-Albert, C., Staller, A., Sánchez-Sobrino, J., & Herrera, G. (2020). Improving multi-technique monitoring using Sentinel-1 and COSMO-SkyMed data and upgrading groundwater model capabilities. Science of the Total Environment, 703, 134757. https://doi.org/10.1016/j.scitotenv.2019.134757
  • Garg, S., Motagh, M., Indu, J., & Karanam, V. (2021). Tracking hidden crisis in India’s capital from space: Implications of unsustainable groundwater use. Scientific Reports, 12(1), 651. https://doi.org/10.1038/s41598-021-04193-9
  • Ghasemi, M., Karimzadeh, S., & Feizizadeh, B. (2021). Urban classification using preserved information of high dimensional textural features of sentinel-1 images in Tabriz, Iran. Earth Science Informatics, 14(4), 1745–1762. https://doi.org/10.1007/s12145-021-00617-2
  • Güven, I. T. (2022). Seismic vulnerability indices for ground in derince-kocaeli (NW Turkey). Environmental Earth Sciences, 81(5), 167. https://doi.org/10.1007/s12665-022-10288-x
  • Haklay, M., & Weber, P. (2008). OpenStreetMap: user-generated street maps. IEEE Pervasive Computing, 7(4), 12–18. https://doi.org/10.1109/MPRV.2008.80
  • Halicioglu, K., Erten, E., & Rossi, C. (2021). Monitoring displacements of Istanbul metro line stations through sentinel-1 and levelling observations. Environmental Earth Sciences, 80(9), 361. https://doi.org/10.1007/s12665-021-09644-0
  • Hu, F., Leijen, F. J., Chang, L., Wu, J., & Hanssen, R. F. (2019). Monitoring deformationalong railway systems combining multi-temporal InSAR and LiDAR data. Remote Sensing, 11(19), 2298. https://doi.org/10.3390/rs11192298
  • Karimzadeh, S., Ghasemi, M., Matsuoka, M., Yagi, K., & Zulfikar, A. C. (2022). A deep learning model for road damage detection after an earthquake based on synthetic aperture radar (SAR) and field datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5753–5765. https://doi.org/10.1109/JSTARS.2022.3189875
  • Karimzadeh, S., & Matsuoka, M. (2018). Building damage characterization for the 2016 amatrice earthquake using ascending–descending COSMO-SkyMed data and topographic position index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2668–2682. https://doi.org/10.1109/JSTARS.2018.2825399
  • Karimzadeh, S., & Matsuoka, M. (2020a). Ground displacement in east azerbaijan province, Iran, revealed by L-band and C-band InSAR analyses. Sensors, 20(23), 6913. https://doi.org/10.3390/s20236913
  • Karimzadeh, S., & Matsuoka, M. (2020b). Remote sensing X-Band SAR data for land subsidence and pavement monitoring. Sensors, 20(17), 4751. https://doi.org/10.3390/s20174751
  • Karimzadeh, S., & Matsuoka, M. (2021). Development of nationwide road quality map: Remote sensing meets field sensing. Sensors, 21(6), 2251. https://doi.org/10.3390/s21062251
  • Karimzadeh, S., Matsuoka, M., Miyajima, M., Adriano, B., Fallahi, A., & Karashi, J. (2018). Sequential SAR coherence method for the monitoring of buildings in Sarpole-Zahab, Iran. Remote Sensing, 10(8), 1255. https://doi.org/10.3390/rs10081255
  • Karimzadeh, S., Matsuoka, M., & Ogushi, F. (2018). Spatiotemporal deformationpatterns of the lake urmia causeway as characterized by multisensor InSAR analysis. Scientific Reports, 8(1), 5357. https://doi.org/10.1038/s41598-018-23650-6
  • Karimzadeh, S., Valizadeh, K., & Mahdavifard, M. (2022). A multisensor satellite image classification for the detection of mangrove forests in Qeshm Island (Southern Iran). Applied Geomatics, 15(1), 177–188. https://doi.org/10.1007/s12518-022-00475-7
  • Kim, J.-R., Lin, C.-W., & Lin, S.-Y. (2021). The use of InSAR phase coherence analyses for the monitoring of aeolian erosion. Remote Sensing, 13(12), 2240. https://doi.org/10.3390/rs13122240
  • Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., Elliott, J., Greenall, N., Hatton, E., Hooper, A., Juncu, D., McDougall, A., Walters, R. J., Watson, C., Weiss, J. R., & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430. https://doi.org/10.3390/rs12152430
  • Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2(2), 165–168. https://doi.org/10.1109/TPAMI.1980.4766994
  • Lepadatu, A., & Tiberius, C. (2014). GPS for structural health monitoring – case study on the Basarab overpass cable-stayed bridge. Journal of Applied Geodesy, 8(1), 65–86. https://doi.org/10.1515/jag-2013-0020
  • Lovse, J., Teskey, W. F., Lachapelle, G., & Cannon, M. (1995). Dynamic deformationmonitoring of tall structure using GPS technology. Journal of Surveying Engineering, 121(1), 35–40. https://doi.org/10.1061/(ASCE)0733-9453(1995)121:1(35)
  • Meier, E., Frei, U., & Nuesch, D. (1993). Precise terrain corrected geocoded images. Wichmann Verlag, SAR Geocoding. In Data and System.
  • Mele, A., Crosetto, M., Miano, A., & Prota, A. (2023). Adafinder tool applied to EGMS data for the structural health monitoring of urban settlements. Remote Sensing, 15(2), 324. https://doi.org/10.3390/rs15020324
  • Mele, A., Vitiello, A., Bonano, M., Miano, A., Lanari, R., Acampora, G., & Prota, A. (2022). On the joint exploitation of satellite DInSAR measurements and DBSCAN-Based techniques for preliminary identification and ranking of critical constructions in a built environment. Remote Sensing, 14(8), 1872. https://doi.org/10.3390/rs14081872
  • Miano, A., DiCarlo, F., Mele, A., Giannetti, I., Nappo, N., Rompato, M., Striano, P., Bonano, M., Bozzano, F., Lanari, R., et al. (2022). GIS integration of DInSAR measurements, geological investigation and historical surveys for the structural monitoring of buildings and infrastructures: An application to the valco san paolo urban area of Rome. Infrastructures, 7(7), 89. https://doi.org/10.3390/infrastructures7070089
  • Miura, H., Aridome, T., & Matsuoka, M. (2020). Deep learning-based identification of collapsed, non-collapsed and blue tarp-covered buildings from post-disaster aerial images. Remote Sensing, 12(12), 1924. 1924. https://doi.org/10.3390/rs12121924
  • Miura, H., Midorikawa, S., & Matsuoka, M. (2016). Building damage assessment using high-resolution satellite SAR images of the 2010 Haiti earthquake. Earthquake Spectra, 32(1), 591–610. https://doi.org/10.1193/033014EQS042M
  • Mohamadzadeh, P., Pourmoradian, S., Feizizadeh, B., Sharifi, A., & Vogdrup-Schmidt, M. (2020). A GIS-Based approach for spatially-explicit sustainable development assessments in East Azerbaijan Province, Iran. Sustainability, 12(24), 10413. https://doi.org/10.3390/su122410413
  • Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J., & Hooper, A. (2020). LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor. Remote Sensing, 12(3), 424. https://doi.org/10.3390/rs12030424
  • Natsuaki, R. (2012). Local, fine Co-registration of SAR Interferometry Using the Number of Singular Points for the evaluation. IntechOpen.
  • Omarzadeh, D., Karimzadeh, S., Matsuoka, M., & Feizizadeh, B. (2021). Earthquake aftermath from very high-resolution WorldView-2 image and semi-automated object-based image analysis (case study: Kermanshah, Sarpol-e Zahab, Iran). Remote Sensing, 13(21), 4272. https://doi.org/10.3390/rs13214272
  • Özarpacı, S., Doğan, U., Ergintav, S., Çakır, Z., Özdemir, A., Floyd, M., & Reilinger, R. (2022). Present GPS velocity field along 1999 Izmit rupture zone: Evidence for continuing afterslip 20 yr after the earthquake. Geophysical Journal International, 224(3), 2016–2027. https://doi.org/10.1093/gji/ggaa560
  • Qin, X., Liao, M., Zhang, L., & Yang, M. (2017). Structural health and stability assessment of high-speed railways via thermal dilation mapping with time-series InSAR analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 2999–3010. https://doi.org/10.1109/JSTARS.2017.2719025
  • Ram, F. (2022, March). OpenStreetMap data in layered GIS format, version 0.7.12. Geofabrik.
  • Sehra, S., Singh, J., & Rai, H. (2016). Analysing OpenStreetMap data for topological errors. International Journal of Spatial Temporal and Multimedia Information Systems, 1(1), 87. https://doi.org/10.1504/IJSTMIS.2016.076800
  • Stramondo, S., Browitt, C., Cooksley, G., Parcharidis, I., & Zulfikar, C. (2010). PSInSAR applications in seismology: Products and services for end users management tools, SD11/P11/ID59 Proc., European Seismological Commission ESC, 32nd General Assembly, Montpellier, France, September 6-10.
  • Stramondo, S., Zulfikar, C., Demircioglu, M., Lagios, E., Sakkas, V., Ganas, A., Stamatopoulos, K., Foumelis, M., Parcharidis, I., Novali, F., Bignami, C., & Chini, M. (2011). Surface displacements in active tectonic areas studied by PSI Techniques. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, July 24-29.
  • Su, Z., Wang, E., Hu, J., Talebian, M., & Karimzadeh, S. (2017). Quantifying the termination mechanism along the north tabriz-north mishu fault zone of Northwestern Iran via small baseline PS-InSAR and GPS decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(1), 130–144. https://doi.org/10.1109/JSTARS.2016.2586742
  • Vaglio Laurin, G., Mattioli, W., Innocenti, S., Lombardo, E., Valentini, R., & Puletti, N. (2022). Potential of ALOS2 polarimetric imagery to support management of poplar plantations in northern Italy. Remote Sensing, 14(20), 5202. https://doi.org/10.3390/rs14205202
  • Wang, Y., Bai, Z., Zhang, Y. /., Qin, Y., Lin, Y., Li, Y., & Shen, W. (2021). Using TerraSAR X-Band and Sentinel-1 C-Band SAR interferometry for deformation along Beijing-Tianjin intercity railway analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4832–4841. https://doi.org/10.1109/JSTARS.2021.3076244
  • Watanabe, M., Thapa, R. B., Ohsumi, T., Fujiwara, H., Yonezawa, C., Tomii, N., & Suzuki, S. (2016). Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2. Earth, Planets and Space, 68(1), 131. https://doi.org/10.1186/s40623-016-0513-2
  • Xiu, H., Liu, X., Wang, W., Kim, K., Shinohara, T., Chang, Q., & Matsuoka, M. (2022). DS-Net: A dedicated approach for collapsed building detection from post-event airborne point clouds. International Journal of Applied Earth Observation and Geoinformation, 116, 103150. https://doi.org/10.1016/j.jag.2022.103150