947
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

Time-first approach for land cover mapping using big Earth observation data time-series in a data cube – a case study from the Lake Geneva region (Switzerland)

ORCID Icon
Received 22 Dec 2023, Accepted 14 Feb 2024, Published online: 11 Mar 2024

References

  • Alem, A., & Kumar, S. (2022). Transfer learning models for land cover and land use classification in remote sensing image. Applied Artificial Intelligence, 36(1), 2014192. https://doi.org/10.1080/08839514.2021.2014192
  • Appel, M., & Pebesma, E. (2019). On-demand processing of data cubes from satellite image collections with the gdalcubes library. Data, 4(3), 92. https://doi.org/10.3390/data4030092
  • Arino, O., Gross, D., Ranera, F., Leroy, M., Bicheron, P., Brockman, C., Defourny, P., Vancutsem, C., Achard, F., Durieux, L., Bourg, L., Latham, J., DiGregorio, A., Witt, R., Herold, M., Sambale, J., Plummer, S., & Weber, J.-L. (2007). GlobCover: ESA service for global land cover from MERIS. 2007 IEEE International Geoscience and Remote Sensing Symposium, 2412–2415. https://doi.org/10.1109/IGARSS.2007.4423328
  • Arnold, S., Kosztra, B., Banko, G., Smith, G., Hazeu, G., Bock, M., & Valcarcel Sanz, N. (2013). The EAGLE concept—A vision of a future European land monitoring framework. 3–6.
  • Ban, Y. F., Gong, P., & Gini, C. (2015). Global land cover mapping using earth observation satellite data: Recent progresses and challenges. Isprs Journal of Photogrammetry and Remote Sensing, 103, 1–6. https://doi.org/10.1016/j.isprsjprs.2015.01.001
  • Baraldi, A., Sapia, L. D., Tiede, D., Sudmanns, M., Augustin, H. L., & Lang, S. (2023a). Innovative Analysis Ready Data (ARD) product and process requirements, software system design, algorithms and implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in a new notion of space economy 4.0 - part 1. Problem Background in Artificial General Intelligence (AGI) Big Earth Data, 7(3), 455–693. https://doi.org/10.1080/20964471.2021.2017549
  • Baraldi, A., Sapia, L. D., Tiede, D., Sudmanns, M., Augustin, H., & Lang, S. (2023b). Innovative analysis ready data (ARD) product and process requirements, software system design, algorithms and implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in a new notion of space economy 4.0 - part 2: Software developments. Big Earth Data, 7(3), 694–811. https://doi.org/10.1080/20964471.2021.2017582
  • Bayle, A., Carlson, B. Z., Thierion, V., Isenmann, M., & Choler, P. (2019). Improved mapping of mountain shrublands using the sentinel-2 red-edge band. Remote Sensing, 11(23), 2807. Article 23. https://doi.org/10.3390/rs11232807
  • Beyeler, N., Douard, R., Jeannet, A., Willi-Tobler, L., & Weibel, F. (2021). Land Use in Switzerland: Results of the Swiss Land Use Statistics 2018. Bundesamt für Statistik (BFS). https://dam-api.bfs.admin.ch/hub/api/dam/assets/19365054/master
  • Bontemps, S., Defourny, P., Radoux, J., Van Bogaert, E., Lamarche, C., Achard, F., Mayaux, P., Boettcher, M., Brockmann, C., & Kirches, G. (2013). Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover CCI, Proceedings of the conference ESA SP-722. 2-13, September 9-13 2013, Edinburgh, UK (p. 62).
  • Boston, T., Van Dijk, A., & Thackway, R. (2023). Convolutional neural network shows greater spatial and temporal stability in multi-annual land cover mapping than pixel-based methods. Remote Sensing, 15(8), 2132. Article 8. https://doi.org/10.3390/rs15082132
  • Bratic, G., Oxoli, D., & Brovelli, M. A. (2023). Map of land cover agreement: Ensambling existing datasets for large-scale training data provision. Remote Sensing, 15(15), 3774. https://doi.org/10.3390/rs15153774
  • Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., & Tait, A. M. Article 1. (2022). Dynamic world, near real-time global 10 m land use land cover mapping. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01307-4.
  • Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q., Dwyer, J. L., Vogelmann, J. E., Loveland, T. R., Woodcock, C. E., Stehman, S. V., Zhu, Z., Pengra, B. W., Smith, K., Horton, J. A., Xian, G., Auch, R. F., Sohl, T. L., Sayler, K. L., Gallant, A. L., Zelenak, D. … Rover, J. (2019). Lessons learned implementing an operational continuous United States national land change monitoring capability: The land change monitoring, assessment, and projection (LCMAP) approach. Remote Sensing of Environment, 238, 111356. https://doi.org/10.1016/j.rse.2019.111356
  • Camara, G. (2020). On the semantics of big Earth observation data for land classification. Journal of Spatial Information Science, 20(20), 21–34. https://doi.org/10.5311/JOSIS.2020.20.645
  • Camara, G., Queiroz, G., Vinhas, L., Ferreira, K., Cartaxo, R., Simoes, R., Llapa, E., Assis, L., & Sanchez, A. (2017). THE E-SENSING ARCHITECTURE FOR BIG EARTH OBSERVATION DATA ANALYSIS. Proceedings of the 2017 conference on Big Data from Space (BIDS’ 2017) (pp. 48–51). https://doi.org/10.2760/383579
  • Camara, G., Simoes, R., Souza, F., Pelletier, C., Sanchez, A., Andrade, P. R., Ferreira, K., & Queiroz, G. (2016). Sits: Satellite Image Time Series Analysis on Earth Observation Data Cubes. Retrieved July 20, 2023, from https://e-sensing.github.io/sitsbook/
  • Carlos, F. M., Gomes, V. C. F., Queiroz, G. R. D., Souza, F. C. D., Ferreira, K. R., & Santos, R. (2021). Integrating open data cube and brazil data cube platforms for land use and cover classifications. Revista Brasileira de Cartografia, 73(4), 1036–1047. Article 4. https://doi.org/10.14393/rbcv73n4-60387
  • Chai, B., & Li, P. (2023). An ensemble method for monitoring land cover changes in urban areas using dense Landsat time series data. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 29–42. https://doi.org/10.1016/j.isprsjprs.2022.11.002
  • Chatenoux, B., Richard, J.-P., Small, D., Roeoesli, C., Wingate, V., Poussin, C., Rodila, D., Peduzzi, P., Steinmeier, C., Ginzler, C., Psomas, A., Schaepman, M., & Giuliani, G. (2021). The Swiss data cube: Analysis Ready data archive using earth observations of Switzerland. Scientific Data, 8(295). https://doi.org/10.1038/s41597-021-01076-6
  • Chaves M, E. D., Picoli M, C. A., & Sanches, D. I. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18), 3062. Article 18. https://doi.org/10.3390/rs12183062
  • Chaves, M. E. D., Soares, A. R., Mataveli, G. A. V., Sánchez, A. H., & Sanches, I. D. (2023). A semi-automated workflow for LULC mapping via sentinel-2 data cubes and spectral indices. Automation, 4(1), 94–109. Article 1. https://doi.org/10.3390/automation4010007
  • Chaves, M., Soares, A., Picoli, M., Simoes, R., Ipia, A., Lechler, S., & Sanches, I. (2023). GEOBIA and multitemporal segmentation for land use and land cover mapping: A case study in Mato Grosso, Brazil. Proceedings of the XX Brazilian Symposium on Remote Sensing - XX SBSR, Florianópolis (Vol. 20, p. 156009).
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
  • Cheng, X., Sun, Y., Zhang, W., Wang, Y., Cao, X., & Wang, Y. (2023). Application of deep learning in multitemporal remote sensing image classification. Remote Sensing, 15(15), 3859. Article 15. https://doi.org/10.3390/rs15153859
  • Chen, H., Yang, L., & Wu, Q. (2023). Enhancing land cover mapping and monitoring: An interactive and explainable machine learning approach using Google Earth Engine. Remote Sensing, 15(18), 4585. Article 18. https://doi.org/10.3390/rs15184585
  • Comber, A., Fisher, P., & Wadsworth, R. (2005). What is land cover?. Environment & Planning. B, Planning & Design, 32(2), 199–209. https://doi.org/10.1068/b31135
  • Congedo, L. (2021). Semi-automatic classification Plugin: A python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
  • Costa, H., Benevides, P., & Caetano, M. (2023). The Portuguese land cover monitoring system (SMOS): From research and development (R&D) to operations. REVISTA INTERNACIONAL MAPPING, 32(210), 44–51. https://doi.org/10.59192/mapping.387
  • d’Andrimont, R., Verhegghen, A., Meroni, M., Lemoine, G., Strobl, P., Eiselt, B., Yordanov, M., Martinez-Sanchez, L., & van der Velde, M. (2021). LUCAS Copernicus 2018: Earth-observation-relevant in situ data on land cover and use throughout the European Union. Earth System Science Data, 13(3), 1119–1133. https://doi.org/10.5194/essd-13-1119-2021
  • Delgado Hernández, J., & Valcárcel Sanz, N. (2022). National high-resolution land cover and land use information system. International Journal of Cartography, 8(1), 54–69. https://doi.org/10.1080/23729333.2021.1999051
  • Dhu, T., Giuliani, G., Juarez, J., Kavadda, A., Killough, B., Merodio, P., Minchin, S., & Ramage, S. (2019). National Open Data Cubes and their contribution to country-level development policies and practices. Data, 4(4), 144. https://doi.org/10.3390/data4040144
  • DiGregorio, A. (2016). Land cover classification system: Classification concepts. Software version 3.
  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES operational services. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
  • Du, H., Li, M., Xu, Y., & Zhou, C. (2023). An ensemble learning approach for land use/land cover classification of arid regions for climate simulation: A case study of xinjiang, northwest China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 2413–2426. https://doi.org/10.1109/JSTARS.2023.3247624
  • Dwyer, J., Roy, D., Sauer, B., Jenkerson, C., Zhang, H., & Lymburner, L. (2018). Analysis ready data: Enabling analysis of the Landsat archive. 10(9), 1363. https://doi.org/10.20944/preprints201808.0029.v1
  • Easdale, M. H., Fariña, C., Hara, S., Pérez León, N., Umaña, F., Tittonell, P., & Bruzzone, O. (2019). Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring. Ecological Indicators, 107, 105545. https://doi.org/10.1016/j.ecolind.2019.105545
  • Elreedy, D., & Atiya, A. F. (2019). A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance. Information Sciences, 505, 32–64. https://doi.org/10.1016/j.ins.2019.07.070
  • Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2018). Deep learning for time series classification: A review. arXiv:1809.04356 [Cs, Stat]. http://arxiv.org/abs/1809.04356
  • Federal Statistical Office - FSO. (2007). Degree of landscape fragmentation in Switzerland. Federal Office for the Environment FOEN.
  • Ferreira, K. R., Queiroz, G. R., Vinhas, L., Marujo, R. F. B., Simoes, R. E. O., Picoli, M. C. A., Camara, G., Cartaxo, R., Gomes, V. C. F., Santos, L. A., Sanchez, A. H., Arcanjo, J. S., Fronza, J. G., Noronha, C. A., Costa, R. W., Zaglia, M. C., Zioti, F., Korting, T. S., Soares, A. R. … Fonseca, L. M. G. (2020). Earth observation data cubes for Brazil: Requirements, methodology and products. Remote Sensing, 12(24), 4033. Article 24. https://doi.org/10.3390/rs12244033
  • Flores-Anderson, A. I., Cardille, J., Azad, K., Cherrington, E., Zhang, Y., & Wilson, S. Article 1. (2023). Spatial and temporal availability of cloud-free optical observations in the Tropics to monitor deforestation. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02439-x.
  • Fonte, C. C., Patriarca, J. A., Minghini, M., Antoniou, V., See, L., & Brovelli, M. A. (2019). Using OpenStreetMap to create land use and land cover maps: Development of an application. In Geospatial intelligence: Concepts, methodologies, tools, and applications (pp. 1100–1123). IGI Global. https://doi.org/10.4018/978-1-5225-8054-6.ch047
  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4
  • Frantz, D., Rufin, P., Janz, A., Ernst, S., Pflugmacher, D., Schug, F., & Hostert, P. (2023). Understanding the robustness of spectral-temporal metrics across the global Landsat archive from 1984 to 2019 – a quantitative evaluation. Remote Sensing of Environment, 298, 113823. https://doi.org/10.1016/j.rse.2023.113823
  • Frenay, B., & Verleysen, M. (2014). Classification in the presence of label noise: A survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5), 845–869. https://doi.org/10.1109/TNNLS.2013.2292894
  • Friedl, M. A., Woodcock, C. E., Olofsson, P., Zhu, Z., Loveland, T., Stanimirova, R., Arevalo, P., Bullock, E., Hu, K.-T., Zhang, Y., Turlej, K., Tarrio, K., McAvoy, K., Gorelick, N., Wang, J. A., Barber, C. P., & Souza, C. (2022). Medium spatial resolution mapping of global land cover and land cover change across multiple decades from Landsat. Frontiers in Remote Sensing, 3, 3. https://www.frontiersin.org/article/10.3389/frsen.2022.894571
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  • Giuliani, G., Chatenoux, B., Bono, A. D., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., & Peduzzi, P. (2017). Building an earth observations data cube: Lessons learned from the Swiss data cube (SDC) on generating analysis ready data (ARD). Big Earth Data, 1(1–2), 100–117. https://doi.org/10.1080/20964471.2017.1398903
  • Giuliani, G., Mazzetti, P., Santoro, M., Nativi, S., Van Bemmelen, J., Colangeli, G., & Lehmann, A. (2020). Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on land degradation. International Journal of Applied Earth Observation and Geoinformation, 88, 102068. https://doi.org/10.1016/j.jag.2020.102068
  • Giuliani, G., Rodila, D., Külling, N., Maggini, R., & Lehmann, A. (2022). Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System. Land, 11(5), 615. Article 5. https://doi.org/10.3390/land11050615
  • Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A. K., Cheng, W.-H., & Balling, R. C. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 205, 253–275. https://doi.org/10.1016/j.rse.2017.11.026
  • Gomes, V. C. F., Queiroz, G. R., & Ferreira, K. R. (2020). An overview of platforms for big earth observation data management and analysis. Remote Sensing, 12(8), 1253. Article 8. https://doi.org/10.3390/rs12081253
  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
  • Gonseth, Y., Wohlgemuth, W., Sansonnens, B., & Buttler, A. (2001). Les régions biogéographiques de la Suisse – Explications et division standard. (Cahier de l’environnement). Office fédéral de l’environne- ment, des forêts et du paysage.
  • Guo, H., Nativi, S., Liang, D., Craglia, M., Wang, L., Schade, S., Corban, C., He, G., Pesaresi, M., Li, J., Shirazi, Z., Liu, J., & Annoni, A. (2020). Big Earth Data science: an information framework for a sustainable planet. International Journal of Digital Earth, 13(7), 743–767. https://doi.org/10.1080/17538947.2019.1700631
  • Hadi, Y. P., Zulkarnain, M. T., Mohamad, F., Goib, B. K., Hultera, P., Sturn, T., Karner, M., Dürauer, M., See, L., Fritz, S., Hendriatna, A., Nursafingi, A., Melati, D. N., Prasetya, F. V. A. S., Carolita, I., Kiswanto, F. M. I., Rosidi, M., & Kraxner, F. Article 1. (2022). A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01689-5.
  • Halbgewachs, M., Wegmann, M., & da Ponte, E. (2022). A spectral mixture analysis and landscape metrics based framework for monitoring spatiotemporal forest cover changes: A case study in mato grosso, Brazil. Remote Sensing, 14(8), 1907. Article 8. https://doi.org/10.3390/rs14081907
  • Hermosilla, T., Wulder, M. A., White, J. C., & Coops, N. C. (2022). Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, 268, 112780. https://doi.org/10.1016/j.rse.2021.112780
  • Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., & Hobart, G. W. (2018). Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year landsat time series. Canadian Journal of Remote Sensing, 44(1), 67–87. https://doi.org/10.1080/07038992.2018.1437719
  • Jin, H., & Eklundh, L. (2014). A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 152, 512–525. https://doi.org/10.1016/j.rse.2014.07.010
  • Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 27. https://doi.org/10.1186/s40537-019-0192-5
  • Karkauskaite, P., Tagesson, T., & Fensholt, R. (2017). Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sensing, 9(5), 485. Article 5. https://doi.org/10.3390/rs9050485
  • Kennedy Robert, E., Serge, A., Cohen Warren, B., Cristina, G., Patrick, G., Martin, H., Healey Sean, P., Helmer Eileen, H., Patrick, H., Lyons Mitchell, B., Meigs Garrett, W., Dirk, P., Phinn Stuart, R., Powell Scott, L., Peter, S., Susmita, S., Schroeder Todd, A., Annemarie, S., Ruth, S., & Zhe, Z. (2014). Bringing an ecological view of change to Landsat‐based remote sensing. Frontiers in Ecology and the Environment, 12(6), 339–346. https://doi.org/10.1890/130066
  • Lewińska, K., Frantz, D., Leser, U., & Hostert, P. (2023). Usable observations over Europe: Evaluation of compositing windows for Landsat and Sentinel-2 time series. Preprints. https://doi.org/10.20944/preprints202308.2174.v1
  • Lewis, A., Lacey, J., Mecklenburg, S., Ross, J., Siqueira, A., Killough, B., Szantoi, Z., Tadono, T., Rosenavist, A., Goryl, P., Miranda, N., & Hosford, S. (2018). CEOS analysis ready data for land (CARD4L) overview. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 7407–7410. https://doi.org/10.1109/IGARSS.2018.8519255
  • Loaiza, D. M., Kraemer, G., Anghelea, A., Camacho, C. L. A., Brandt, G., Camps-Valls, G., Cremer, F., Flik, I., Gans, F., Habershon, S., Ji, C., Kattenborn, T., Martínez-Ferrer, L., Martinuzzi, F., Reinhardt, M., Söchting, M., Teber, K., & Mahecha, M. (2023). Data Cubes for Earth System Research: Challenges Ahead. https://eartharxiv.org/repository/view/5649/
  • Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X., Donner, R. V., Ghent, D., Gruber, A., Kaminski, T., Kinzel, J., Klepp, C., Lambert, J.-C., Schaepman-Strub, G., Schröder, M., & Verhoelst, T. (2017). Validation practices for satellite-based earth observation data across communities. Reviews of Geophysics, 55(3), 2017RG000562. https://doi.org/10.1002/2017RG000562
  • Loveland, T. R., Anderson, M. C., Huntington, J. L., Irons, J. R., Johnson, D. M., Rocchio, L. E. P., Woodcock, C. E., & Wulder, M. A. (2022). Seeing our planet anew: Fifty years of landsat. Photogrammetric Engineering & Remote Sensing, 88(7), 429–436. https://doi.org/10.14358/PERS.88.7.429
  • Lucas, R. M., German, S., Metternicht, G., Schmidt, R. K., Owers, C. J., Prober, S. M., Richards, A. E., Tetreault-Campbell, S., Williams, K. J., Mueller, N., Tissott, B., Chua, S. M. T., Cowood, A., Hills, T., Gunawardana, D., McIntyre, A., Chognard, S., Hurford, C., Planque, C. … Horton, C. (2022). A globally relevant change taxonomy and evidence-based change framework for land monitoring. Global Change Biology, 28(21), 6293–6317. n/a(n/a. https://doi.org/10.1111/gcb.16346
  • Lucas, R., & Mitchell, A. (2017). Integrated land cover and change classifications. In The roles of remote sensing in nature conservation (pp. 295–308). Springer. https://doi.org/10.1007/978-3-319-64332-8_15
  • Marston, C. G., O’Neil, A. W., Morton, R. D., Wood, C. M., & Rowland, C. S. (2023). LCM2021 – the UK Land Cover Map 2021. Earth System Science Data, 15, 4631–4649. https://doi.org/10.5194/essd-15-4631-2023.
  • Maus, V., Câmara, G., Appel, M., & Pebesma, E. (2019). dtwSat: time-weighted dynamic time warping for satellite image time series analysis in R. Journal of Statistical Software, 88(1), 1–31. https://doi.org/10.18637/jss.v088.i05
  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343
  • Mayr, S., Kuenzer, C., Gessner, U., Klein, I., & Rutzinger, M. (2019). Validation of earth observation time-series: A review for large-area and temporally dense land surface products. Remote Sensing, 11(22), 2616. https://doi.org/10.3390/rs11222616
  • Metternicht, G., Mueller, N., & Lucas, R. (2020). Digital Earth for sustainable development goals. In H. Guo, M. F. Goodchild, & A. Annoni (Eds.), Manual of Digital Earth (pp. 443–471). Springer. https://doi.org/10.1007/978-981-32-9915-3_13
  • Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., & Wieneke, S. (2023). A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research. Scientific Data, 10(1), 197. https://doi.org/10.1038/s41597-023-02096-0
  • Mushtaq, F., Henry, M., O’Brien, C., DiGregorio, A., Jalal, R., Latham, J., Muchoney, D., Hill, C., Mosca, N., Tefera, M., Morteo, K., Franceschini, G., Ghosh, A., Tchana, E., & Chen, Z. (2022). An international library for land cover legends: The land cover legend registry. Land, 11, 1083. https://doi.org/10.3390/land11071083
  • Myers, D. T., Jones, D., Oviedo-Vargas, D., Schmit, J. P., Ficklin, D. L., & Zhang, X. (2023). Seasonal variation in landcover estimates reveals sensitivities and opportunities for environmental models. EGUsphere, 1–22. https://doi.org/10.5194/egusphere-2023-1171
  • NCCS. (2018). CH2018 – Climate Scenarios for Switzerland, Technical Report (p. 271).
  • Obuchowicz, C., Poussin, C., & Giuliani, G. (2023). Change in observed long-term greening across Switzerland – evidence from a three decades NDVI time-series and its relationship with climate and land cover factors. Big Earth Data. https://doi.org/10.1080/20964471.2023.2268322
  • Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
  • Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131. https://doi.org/10.1016/j.rse.2012.10.031
  • Owers, C. J., Lucas, R. M., Clewley, D., Planque, C., Punalekar, S., Tissott, B., Chua, S. M. T., Bunting, P., Mueller, N., & Metternicht, G. (2021). Living Earth: Implementing national standardised land cover classification systems for earth observation in support of sustainable development. Big Earth Data, 5(3), 368–390. https://doi.org/10.1080/20964471.2021.1948179
  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Dor, E. B. (2019). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International. https://www.tandfonline.com/doi/abs/10.1080/10106049.2019.1629647
  • Papoutsis, I., Bountos, N. I., Zavras, A., Michail, D., & Tryfonopoulos, C. (2023). Benchmarking and scaling of deep learning models for land cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 250–268. https://doi.org/10.1016/j.isprsjprs.2022.11.012
  • Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. (2019). Mapping agricultural landuse patterns from time series of landsat 8 using random forest based hierarchial approach. Remote Sensing, 11(5), 601. https://doi.org/10.3390/rs11050601
  • Parmentier, B., & Eastman, J. R. (2014). Land transitions from multivariate time series: Using seasonal trend analysis and segmentation to detect land-cover changes. International Journal of Remote Sensing, 35(2), 671–692. https://doi.org/10.1080/01431161.2013.871595
  • Pelletier, C., Valero, S., Inglada, J., Champion, N., Marais Sicre, C., & Dedieu, G. (2017). Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sensing, 9(2), 173. Article 2. https://doi.org/10.3390/rs9020173
  • Pelletier, C., Webb, G. I., & Petitjean, F. (2019). Temporal convolutional neural network for the classification of Satellite image time series. Remote Sensing, 11(5), 523. https://doi.org/10.3390/rs11050523
  • Phan, T.-N., Dashpurev, B., Wiemer, F., & Lehnert, L. W. (2022). A simple, fast, and accurate method for land cover mapping in Mongolia. Geocarto International, 37(26), 14432–14450. https://doi.org/10.1080/10106049.2022.2087759
  • Phiri, D., Simwanda, M., Salekin, S., Nyirenda V, R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14), 2291. Article 14. https://doi.org/10.3390/rs12142291
  • Planque, C., Punalekar, S., Lucas, R., Chognard, S., Owers, C. J., Clewley, D., Bunting, P., Sykes, H., & Horton, C. (2020). Living wales: Automatic and routine environmental monitoring using multi-source earth observation data. Earth Resources and Environmental Remote Sensing/GIS Applications XI, 11534, 115340C. https://doi.org/10.1117/12.2573763
  • Plummer, S., Lecomte, P., & Doherty, M. (2017). The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment, 203(Supplement C), 2–8. https://doi.org/10.1016/j.rse.2017.07.014
  • Poussin, C., Massot, A., Ginzler, C., Weber, D., Chatenoux, B., Lacroix, P., Piller, T., Nguyen, L., & Giuliani, G. (2021). Drying conditions in Switzerland - indication from a 35-year landsat trend analysis of vegetation water content estimates to support SDGs. Big Earth Data, 5(4), 445–475. https://doi.org/10.1080/20964471.2021.1974681
  • Poussin, C., Timoner, P., Chatenoux, B., Giuliani, G., & Peduzzi, P. (2023). Improved Landsat-based snow cover mapping accuracy using a spatiotemporal NDSI and generalized linear mixed model. Science of Remote Sensing, 7, 100078. https://doi.org/10.1016/j.srs.2023.100078
  • Price, B., Huber, N., Nussbaumer, A., & Ginzler, C. (2023). The habitat map of Switzerland: A remote sensing, composite approach for a high spatial and thematic resolution product. Remote Sensing, 15(3), 643. Article 3. https://doi.org/10.3390/rs15030643
  • Quintano, C., Fernández-Manso, A., Shimabukuro, Y. E., & Pereira, G. (2012). Spectral unmixing. International Journal of Remote Sensing, 33(17), 5307–5340. https://doi.org/10.1080/01431161.2012.661095
  • Radeloff, V. C., Roy, D. P., Wulder, M. A., Anderson, M., Cook, B., Crawford, C. J., Friedl, M., Gao, F., Gorelick, N., Hansen, M., Healey, S., Hostert, P., Hulley, G., Huntington, J. L., Johnson, D. M., Neigh, C., Lyapustin, A., Lymburner, L., and Zhu, Z. (2024). Need and vision for global medium-resolution landsat and sentinel-2 data products. Remote Sensing of Environment, 300, 113918. https://doi.org/10.1016/j.rse.2023.113918
  • Roberts, D., Mueller, N., & Mcintyre, A. (2017). High-dimensional pixel composites from earth observation time series. IEEE Transactions on Geoscience & Remote Sensing, 55(11), 6254–6264. https://doi.org/10.1109/TGRS.2017.2723896
  • Safonova, A., Ghazaryan, G., Stiller, S., Main-Knorn, M., Nendel, C., & Ryo, M. (2023). Ten deep learning techniques to address small data problems with remote sensing. International Journal of Applied Earth Observation and Geoinformation, 125, 103569. https://doi.org/10.1016/j.jag.2023.103569
  • Sainte Fare Garnot, V., Landrieu, L., Giordano, S., & Chehata, N. (2020). Satellite image time series classification with pixel-set encoders and temporal self-attention. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12322–12331. https://doi.org/10.1109/CVPR42600.2020.01234
  • Sang, X., Guo, Q., Wu, X., Xie, T., He, C., Zang, J., Qiao, Y., Wu, H., & Li, Y. (2021). The effect of DEM on the land use/cover classification accuracy of landsat OLI images. Journal of the Indian Society of Remote Sensing, 49(7), 1507–1518. https://doi.org/10.1007/s12524-021-01318-5
  • Santos, L., Ferreira, K. R., Picoli, M., & Camara, G. (2020). Self-organizing maps in earth observation data cubes analysis. In A. Vellido, K. Gibert, C. Angulo, & J. D. M. Guerrero (Eds.), Advances in self-organizing maps, learning vector quantization, clustering and data visualization (pp. 70–79). Springer International Publishing.
  • Shetty, S., Gupta, P. K., Belgiu, M., & Srivastav, S. K. (2021). Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and Google Earth Engine. Remote Sensing, 13(8), 1433. Article 8. https://doi.org/10.3390/rs13081433
  • Shimabukuro, Y. E., & Ponzoni, F. J. (2019). Spectral mixture for remote sensing: Linear model and applications. Springer.
  • Simoes, R., Camara, G., Queiroz, G., Souza, F., Andrade, P. R., Santos, L., Carvalho, A., & Ferreira, K. (2021). Satellite image time series analysis for big earth observation data. Remote Sensing, 13(13), 2428. Article 13. https://doi.org/10.3390/rs13132428
  • Song, L., Estes, A. B., & Estes, L. D. (2023). A super-ensemble approach to map land cover types with high resolution over data-sparse African savanna landscapes. International Journal of Applied Earth Observation and Geoinformation, 116, 103152. https://doi.org/10.1016/j.jag.2022.103152
  • Steinmeier, C. (2013). CORINE Land Cover 2000/2006 Switzerland. Final Report (p. 32). Swiss Federal Institute for Forest, Snow and Landscape Research WSL. <http://www.wsl.ch/publikationen/pdf/12359.pd
  • Sudmanns, M., Augustin, H., Killough, B., Giuliani, G., Tiede, D., Leith, A., Yuan, F., & Lewis, A. (2022). Think global, cube local: An earth observation data cube’s contribution to the digital earth vision. Big Earth Data, 7(3), 831–859. https://doi.org/10.1080/20964471.2022.2099236
  • Sudmanns, M., Tiede, D., Augustin, H., & Lang, S. (2019). Assessing global sentinel-2 coverage dynamics and data availability for operational earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth, 13(7), 768–784. https://doi.org/10.1080/17538947.2019.1572799
  • Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., & Friedl, M. A. (2019). Hierarchical mapping of annual global land cover 2001 to present: The MODIS collection 6 land cover product. Remote Sensing of Environment, 222, 183–194. https://doi.org/10.1016/j.rse.2018.12.013
  • Swiss Federal Statistical Office. (2001). The changing face of land use: Land use statistics of Switzerland. SFO.
  • Szantoi, Z., Geller, G. N., Tsendbazar, N. E., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., & Obregón, A. (2020). Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 112, 28–35. https://doi.org/10.1016/j.envsci.2020.04.005
  • Teixeira, Z., Teixeira, H., & Marques, J. C. (2014). Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality. Science of the Total Environment, 470–471, 1320–1335. https://doi.org/10.1016/j.scitotenv.2013.10.098
  • Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors, 18(1), 18. https://doi.org/10.3390/s18010018
  • Thomas, I. N., & Giuliani, G. (2023). Exploring Switzerland’s land cover change dynamics using a national statistical survey. Land, 12(7), 1386. Article 7. https://doi.org/10.3390/land12071386
  • Truckenbrodt, J., Freemantle, T., Williams, C., Jones, T., Small, D., Dubois, C., Thiel, C., Rossi, C., Syriou, A., & Giuliani, G. (2019). Towards sentinel-1 SAR Analysis Ready Data: A best practices assessment on preparing backscatter data for the cube. Data, 4(3), 93. https://doi.org/10.3390/data4030093
  • Tuia, D., Schindler, K., Demir, B., Camps-Valls, G., Zhu, X. X., Kochupillai, M., Džeroski, S., van Rijn, J. N., Hoos, H. H., Del Frate, F., Datcu, M., Quiané-Ruiz, J.-A., Markl, V., Saux, B. L., & Schneider, R. (2023). Artificial intelligence to advance Earth observation: A perspective. (arXiv:2305.08413). arXiv. https://doi.org/10.48550/arXiv.2305.08413
  • Tulbure, M. G., Hostert, P., Kuemmerle, T., Broich, M., Disney, M., & Hernández‐Stefanoni, J. (2022). Regional matters: On the usefulness of regional land-cover datasets in times of global change. Remote Sensing in Ecology and Conservation, 8(3), 272–283. https://doi.org/10.1002/rse2.248
  • United Nations Convention to Combat Desertification. (2022). The global land outlook (2nd ed.). UNCCD.
  • Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., & Singh, G. (2022). Global 10 m land use land cover datasets: A comparison of dynamic world, world cover and esri land cover. Remote Sensing, 14(16), 4101. Article 16. https://doi.org/10.3390/rs14164101
  • Verde, N., Kokkoris, I. P., Georgiadis, C., Kaimaris, D., Dimopoulos, P., Mitsopoulos, I., & Mallinis, G. (2020). National scale land cover classification for ecosystem services mapping and assessment, using multitemporal Copernicus EO data and Google Earth Engine. Remote Sensing, 12(20), 3303. Article 20. https://doi.org/10.3390/rs12203303
  • Wadoux, A. M. J.-C., Heuvelink, G. B. M., de Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. https://doi.org/10.1016/j.ecolmodel.2021.109692
  • Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., & Hermosilla, T. (2018). Land cover 2.0. International Journal of Remote Sensing, 39(12), 4254–4284. https://doi.org/10.1080/01431161.2018.1452075
  • Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J. , and Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127–147. https://doi.org/10.1016/j.rse.2019.02.015
  • Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C. E. , and Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195. https://doi.org/10.1016/j.rse.2022.113195
  • Xu, S., Xiao, W., Ruan, L., Chen, W., & Du, J. (2023). Assessment of ensemble learning for object-based land cover mapping using multi-temporal Sentinel-1/2 images. Geocarto International, 38(1), 2195832. https://doi.org/10.1080/10106049.2023.2195832
  • Zhang, Y., Woodcock, C. E., Arévalo, P., Olofsson, P., Tang, X., Stanimirova, R., Bullock, E., Tarrio, K. R., Zhu, Z., & Friedl, M. A. (2022). A global analysis of the spatial and temporal variability of usable Landsat observations at the pixel scale. Frontiers in Remote Sensing, 3, 3. https://www.frontiersin.org/article/10.3389/frsen.2022.894618