588
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

Towards seamless environmental prediction – development of Pan-Eurasian EXperiment (PEEX) modelling platform

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ORCID Icon, , , , , , , , , , , , , , , , , , & show all
Pages 189-230 | Received 01 Sep 2023, Accepted 26 Feb 2024, Published online: 09 Apr 2024

References

  • Aagaard, K., Coachman, L. K., & Carmack, E. (1981). On the halocline of the Arctic Ocean. Deep-Sea Research, 28A(6), 529–545. https://doi.org/10.1016/0198-0149(81)90115-1
  • Alekseychik, P., Lappalainen, H. K., Petäjä, T., Zaitseva, N., Heimann, M., Laurila, T., Lihavainen, H., Asmi, E., Arshinov, M., Shevchenko, V., Makshtas, A., Dubtsov, S., Mikhailov, E., Lapshina, E., Kirpotin, S., Kurbatova, Y., Ding, A., Guo, H. … Kulmala, M. (2016). Ground-Based Station Network in Arctic and Subarctic Eurasia: An overview. Geography, Environment, Sustainability, 9(2), 75–88. https://doi.org/10.15356/2071-9388_02v09_2016_06
  • Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O’donnell, D., Schurgers, G., Sorvari, S., & Vesala, T. (2010). Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 3(8), 525–532. https://doi.org/10.1038/ngeo905
  • Arnold, S. R., Law, K. S., Brock, C. A., Thomas, J. L., Starkweather, S. M., von Salzen, K., Stohl, A., Sharma, S., Lund, M. T., Flanner, M. G., Petäjä, T., Tanimoto, H., Gamble, J., Dibb, J. E., Melamed, M., Johnson, N., Fidel, M., Tynkkynen, V.-P. … Bozem, H. (2016). Arctic air pollution: Challenges and opportunities for the next decade. Elementa: Science of the Anthropocene, 4, 000104. https://doi.org/10.12952/journal.elementa.000104
  • Auvinen, M., Järvi, L., Hellsten, A., Rannik, Ü., & Vesala, T. (2017). Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling. Geoscientific Model Development, 10(11), 4187–4205. https://doi.org/10.5194/gmd-10-4187-2017
  • Bai, J., & Duhl, T. (2021). A primary generalized empirical model of BVOC emissions for some typical forests in China. Atmospheric Pollution Research, 12(8), 101126. https://doi.org/10.1016/j.apr.2021.101126
  • Bai, J., Duhl, T., & Hao, N. (2016). Biogenic volatile compound emissions from a temperate forest, China: model simulation. Journal of Atmospheric Chemistry, 73(1), 29–59. https://doi.org/10.1007/s10874-015-9315-3
  • Bai, J., Guenther, A., Turnipseed, A., Duhl, T., & Greenberg, J. (2017). Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China. Atmospheric Environment, 161, 176–190. https://doi.org/10.1016/j.atmosenv.2017.05.002
  • Bai, J. H., Heikkilä, A., & Zong, X. M. (2021). Long-term variations of global solar radiation and atmospheric constituents at Sodankylä in the Arctic. Atmosphere, 12(6), 749. https://doi.org/10.3390/atmos12060749
  • Bai, J. H., Yang, F. T., Wang, H. M., & Xu, M. J. (2023). An empirical model of gross primary productivity (GPP) and relations between GPP and its driving factors, biogenic volatile organic compounds in a subtropical conifer plantation in China. Atmosphere, 14(6), 1046. https://doi.org/10.3390/atmos14061046
  • Bai, J. H., & Zong, X. M. (2021). Global solar radiation transfer and its loss in the atmosphere. Applied Sciences, 11(6), 2651. https://doi.org/10.3390/app11062651
  • Bai, J., Zong, X., Ma, Y., Wang, B., Zhao, C., Yang, Y., Guang, J., Cong, Z., Li, K., & Song, T. (2022). Long-term variations in global solar radiation and its interaction with atmospheric substances at qomolangma. International Journal of Environmental Research and Public Health, 19(15), 8906. https://doi.org/10.3390/ijerph19158906
  • Baklanov, A. (2003). Modelling of formation and dynamics of radioactive aerosols in the atmosphere. In Research on a Theory of Elementary Particles and Solid State (Vol. 4, pp. 135–148). Yaroslavl University.
  • Baklanov, A. (2008). Integrated meteorological and atmospheric chemical transport modeling: Perspectives and strategy for HIRLAM/HARMONIE. HIRLAM Newsletter, 53, 68–78.
  • Baklanov, A., Aloyan, A., Mahura, A., Arutyunyan, V., & Luzan, P. (2011). Evaluation of source‐receptor relationship for atmospheric pollutants using approaches of trajectory modelling, cluster, probability fields analyses and adjoint equations. Atmospheric Pollution Research, 2(4), 400‐529. https://doi.org/10.5094/APR.2011.045
  • Baklanov, A., Brunner, D., Carmichael, G., Flemming, J., Freitas, S., Gauss, M., Hov, O., Mathur, R., Schlünzen, K., Seigneur, C., & Vogel, B. (2017). Key issues for seamless integrated chemistry–meteorology modeling. Bulletin of the American Meteorological Society, 98(11), 2285–2292. https://doi.org/10.1175/BAMS-D-15-00166.1
  • Baklanov, A., & Gordov, E. P. (2006). Man-induced environmental risks: Monitoring, management and remediation of man-made changes in Siberia. Computational Technologies, 11, 162–171.
  • Baklanov, A. A., Korsholm, U. S., Mahura, A. G., Nuterman, R. B., Sass, B. H., & Zakey, A. S. (2011). Physical and chemical weather forecasting as a joint problem: Two-way interacting integrated modelling, in: American Meteorological Society 91st Annual Meeting, Paper 7.1, American Meteorological Society,
  • Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., & Gross, A. (2008). ENVIRO-HIRLAM: On-line coupled modelling of urban meteorology and air pollution. Advances in Science and Research, 2(1), 41–46. https://doi.org/10.5194/asr-2-41-2008
  • Baklanov, A., Korsholm, S. U., Nuterman, R., Mahura, A., Nielsen, K. P., Sass, B. H., Rasmussen, A., Zakey, A., Kaas, E., Kurganskiy, A., Sørensen, B., & González-Aparicio, I. (2017). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: Strategy, methodology, developments and applications (v7.2). Geoscientific Model Development, 10(8), 2971–2999. https://doi.org/10.5194/gmd-10-2971-2017
  • Baklanov, A., & Mahura, A. (2004). Assessment of possible airborne impact from risk sites: Methodology for probabilistic atmospheric studies. Atmospheric Chemistry and Physics, 4(2), 485–495. https://doi.org/10.5194/acp-4-485-2004
  • Baklanov, A., Mahura, A., Penenko, V., Zilitinkevich, S., & Kulmala, M. (2014). Pan-Eurasian Experiment (PEEX): Modelling Platform for Earth System Observations and Forecasting. Geophysical Research Abstracts, 16, EGU2014–15751.
  • Baklanov, A. A., Mahura, A., & Sokhi, R. (Eds.). (2011). Integrated Systems of Meso-Meteorological and Chemical Transport Models. Springer. https://doi.org/10.1007/978-3-642-13980-2_1
  • Baklanov, A., Mestayer, P. G., Clappier, A., Zilitinkevich, S., Joffre, S., Mahura, A., & Nielsen, N. W. (2008). Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description. Atmospheric Chemistry and Physics, 8(3), 523–543. https://doi.org/10.5194/acp-8-523-2008
  • Baklanov, A., Schlünzen, K. H., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M. … Zhang, Y. (2014). Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmospheric Chemistry & Physics, 14(1), 317–398. https://doi.org/10.5194/acp-14-317-2014
  • Baklanov, A., Sorensen, J. H., & Mahura, A. (2008). Methodology for Probabilistic Atmospheric Studies using Long‐Term Dispersion Modelling. Environmental Modelling and Assessment, 13(4), 541‐552. https://doi.org/10.1007/s10666-007-9124-4
  • Baklanov, A., & Zhang, Y. (2020). Advances in air quality modeling and forecasting. Global Transitions, 2, 261–270. https://doi.org/10.1016/j.glt.2020.11.001
  • Bergman, T., Makkonen, R., Schrödner, R., Swietlicki, E., Phillips, V. T. J., Le Sager, P., & van Noije, T. (2022). Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2. Geoscientific Model Development, 15(2), 683–713. https://doi.org/10.5194/gmd-15-683-2022
  • Berg, P., & Poulsen, J. W. (2012). Implementation details for HBM. DMI Technical Report No. 12-11, ISSN: 1399-1388,
  • Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., & Schultz, M. G. (2001). Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research - Atmospheres, 106(D19), 23073–23095. https://doi.org/10.1029/2001JD000807
  • Bondur, V. G., Gordo, K. A., Voronova, O. S., Zima, A. L., & Feoktistova, N. V. (2023). Intense wildfires in Russia over a 22-year period according to satellite data. Forests, 6(3), 99. https://doi.org/10.3390/fire6030099
  • Booij, N., Ris, R., & Holthuijsen, L. A. (1999). Third-Generation Wave Model for coastal regions. 1. Model description and validation. Journal of Geophysical Research - Oceans, 104(C4), 7649–7666. https://doi.org/10.1029/98JC02622
  • Boy, M., Sogachev, A., Lauros, J., Zhou, L., Guenther, A., & Smolander, S. (2011). SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – part 1: Model description and initial evaluation. Atmospheric Chemistry and Physics, 11(1), 43–51. https://doi.org/10.5194/acp-11-43-2011
  • Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., & Worthy, D. (2014). CarbonTracker-CH4: An assimilation system for estimating emissions of atmospheric methane. Atmospheric Chemistry and Physics, 14, 8269–8293. https://doi.org/10.5194/acp-14-8269-2014 16
  • Buzzi, A., Fantini, M., Malguzzi, P., & Nerozzi, P. (1994). Validation of a limited area model in cases of mediterranean cyclogenesis: Surface fields and precipitation scores. Meteorology and Atmospheric Physics, 53(3–4), 137–153. https://doi.org/10.1007/BF01029609
  • Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwel, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., & Bleck, R. (2007). The HYCOM (hybrid coordinate ocean model) data assimilative system. Journal of Marine Systems, 65(1–4), 60–83. https://doi.org/10.1016/j.jmarsys.2005.09.016
  • Chenevez, J., Baklanov, A., & Sørensen, J. H. (2004). Pollutant transport schemes integrated in a numerical weather prediction model: Model description and verification results. Meteorological Applications, 11(3), 265–275. https://doi.org/10.1017/S1350482704001343
  • Chen, C., Kuhn, U., Pöschl, U., Su, H., & Cheng, Y. (2018). Elevated HONO emissions in agricultural system: Model simulation by the improved DNDC model (DNDC-HONO). Geophysical Research Abstracts, 20, EGU2018–13415–1.
  • Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T. J., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Gu, H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H. W., & Wu, Y.… Yoon, J. (2020). Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10(1), 20–29. https://doi.org/10.1038/s41558-019-0662-y
  • Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., & Woodward, S. (2011). Development and evaluation of an Earth-system model – HadGEM2. Geoscientific Model Development, 4(4), 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011
  • Connolley, W. M., Gregory, J. M., Hunke, E. C., & McLaren, A. J. (2004). On the consistent scaling of terms in the sea ice dynamics equation. Journal of Physical Oceanography, 34(7), 1776–1780. https://doi.org/10.1175/1520-0485(2004)034<1776:OTCSOT>2.0.CO;2
  • De Roure, D., & Goble, C. (2007). myExperiment – A Web 2.0 Virtual Research Environment. In, International Workshop on Virtual Research Environments and Collaborative Work Environments, Edinburgh, UK, http://eprints.soton.ac.uk/id/eprint/263961
  • She J., Bethers, U., Cardin, V., Christensen, K.H., Dabrowski, T., Janssen, F., Haapala, J., Lars, A., Legrand, S., Lien, V., Lips, I., Maar, M., Mader, J., Morucci, S., Novellino, A., Orfila, A., Petihakis, G., Ruiz-Villarreal, M., Staneva, J., & Triantafyllou, G. (2021). Develop EuroGOOS marine climate service with seamless earth system approach. Proceedings of the 9th EuroGOOS International conference, Shom; Ifremer; EuroGOOS AISBL, May 2021, Brest (Virtual), France. pp. 554–561.
  • Doney, S. C., Lima, I., Moore, J. K., Lindsay, K., Behrenfeld, M. J., Westberry, T. K., Mahowald, N., Glover, D. M., & Takahashi, T. (2009). Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. Journal of Marine Systems, 76(1–2), 95–112. https://doi.org/10.1016/j.jmarsys.2008.05.015
  • Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P. … Zhang, Q. (2022). The EC-Earth3 earth system model for the coupled Model intercomparison project 6. Geoscientific Model Development, 15(7), 2973–3020. https://doi.org/10.5194/gmd-15-2973-2022
  • Duncan, B. N., Ott, L. E., Abshire, J. B., Brucker, L., Carroll, M. L., Carton, J., Comiso, J. C., Dinnat, E. P., Forbes, B. C., Gonsamo, A., Gregg, W. W., Hall, D. K., Ialongo, I., Jandt, R., Kahn, R. A., Karpechko, A., Kawa, S. R., Kato, S., Kumpula, T., & Winker, D. M.… Wu, D. L. (2020). Space‐based observations for understanding changes in the arctic‐boreal zone. Reviews of Geophysics, 58(1), 1–95, e2019RG000652. https://doi.org/10.1029/2019RG000652
  • Esau, I., Pettersson, L. H., Cancet, M., Chapron, B., Chernokulsky, A., Donlon, C., Sizov, O., Soromotin, A., & Johannesen, J. A. (2023). The arctic amplification and its impact: A synthesis through satellite observations. Remote Sensing, 15(5), 1354. https://doi.org/10.3390/rs15051354
  • Galin, V. Y., Smyshlyaev, S. P., & Volodin, E. M. (2010). Combined chemistry-climate model of the atmosphere. Izvestiya Atmospheric and Oceanic Physics, 43(4), 399–412. https://doi.org/10.1134/S0001433807040020
  • Gent, P., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155. https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  • Gettelman, A., Morrison, H., & Ghan, S. J. (2008). A new two-moment bulk stratiform cloud micro- physics scheme in the NCAR community atmosphere model (CAM3), Part II: Single-column and global results. Journal of Climate, 21(15), 3660–3679. https://doi.org/10.1175/2008JCLI2116.1
  • Giorgetta, M. A., Jungclaus, J. H., Reick, C. H., Legutke, S., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U. … Stevens, B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597. https://doi.org/10.1002/jame.20038
  • Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., Park, H.-S., Pithan, F., Svensson, G., & Vancoppenolle, M. (2018). Quantifying climate feedbacks in polar regions. Nature Communications, 9(1), 1919. https://doi.org/10.1038/s41467-018-04173-0
  • Gordova, Y. E., Yu, E., Genina, V. P., Gorbatenko, E. P., Gordov, I. V., Yu, K., Martynova, V., Okladnikov, I. G., Titov, A. G., Shulgina, T. M., & Barashkova, N. K. (2013). Support of the educational process in modern climatology within the web-GIS platform ”Climate”. Open and Distant Education, 1(49), 14–19.
  • Gordov, E. P., Lykosov, V. N., Krupchatnikov, V. N., Okladnikov, I. G., Titov, A. G., & Shulgina, T. M. (2013). Computational and information technologies for monitoring and modeling of climate changes and their consequences. Nauka, Siberian branch.
  • Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry in the WRF model. Atmospheric Environment, 39(37), 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
  • Gross, A., & Baklanov, A. (2004). Modelling the influence of dimethyl sulphide on aerosol production in the marine boundary layer. International Journal of Environment and Pollution, 22(1–2), 51–71. https://doi.org/10.1504/IJEP.2004.005492
  • Grote, R., Mayrhofer, S., Fischbach, R. J., Steinbrecher, R., Staudt, M., & Schnitzler, J.-P. (2006). Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmospheric Environment, 40, 152–165. https://doi.org/10.1016/J.ATMOSENV.2005.10.071
  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmospheric Chemistry & Physics, 6(11), 3181–3210. https://doi.org/10.5194/acp-6-3181-2006
  • Hari, P., Andreae, M. O., Kabat, P., & Kulmala, M. (2009). A comprehensive network of measuring stations to monitor climate change. Boreal Environment Research, 14(4), 442–446. https://www.borenv.net/BER/archive/pdfs/ber14/ber14-442.pdf
  • Hari, P., & Kulmala, M. (2005). Stations for measuring ecosystem – atmosphere relations (SMEAR II). Boreal Environment Research, 10(5), 315–322. https://www.borenv.net/BER/archive/pdfs/ber10/ber10-315.pdf
  • Hari, P., Petäjä, T., Bäck, J., Kerminen, V.-M., Lappalainen, H. K., Vihma, T., Laurila, T., Viisanen, Y., Vesala, T., & Kulmala, M. (2016). Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 16(2), 1017–1028. https://doi.org/10.5194/acp-16-1017-2016
  • Havlik, P., Schneider, U. A., Schmid, E., Bottcher, H., Fritz, S., Skalsky, R., Aoki, K., De Cara, S., Kindermann, G., Kraxner, F., Leduc, S., McCallum, I., Mosnier, A., Sauer, T., & Obersteiner, M. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39(10), 5690–5702. https://doi.org/10.1016/j.enpol.2010.03.030
  • Hazeleger, W., Severijns, C., Semmler, T., Ştefănescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M. L., Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kållberg, P. … Willén, U. (2010). EC-Earth: A seamless earth-system prediction approach in action. Bulletin of American Meteorological Society, 91(10), 1357–1364. https://doi.org/10.1175/2010bams2877.1
  • Hazeleger, W., Wang, X., Severijns, C., Tefanescu, S. S., Bintanja, R., Sterl, A., Wyser, K., Semmler, T., Yang, S., van den Hurk, B., van Noije, T., van der Linden, E., & van der Wiel, K. (2012). EC-Earth V2: Description and validation of a new seamless Earth system prediction model. Climate Dynamics, 39(11), 2611–2629. https://doi.org/10.1007/s00382-011-1228-5
  • Huang, M., Ji, J., Li, K., Liu, Y., Yang, F., & Tao, B. (2007). The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B: Chemical & Physical Meteorology, 59(3), 439–448. https://doi.org/10.1111/j.1600-0889.2007.00280.x
  • Huang, Y., Yu, Y., Zhang, W., Sun, W. J., Liu, S. L., Jiang, J., Wu, J. S., Yu, W. T., Wang, Y., & Yang, Z. F. (2009). Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 149(1), 106–129. https://doi.org/10.1016/j.agrformet.2008.07.013
  • Huang, Y., Zhang, W., Zheng, X., Li, J., & Yu, Y. (2004). Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research – Atmospheres, 109(D8). https://doi.org/10.1029/2003JD004401
  • Huijnen, V., Williams, J., van Weele, M., van Noije, T., Krol, M., Dentener, F., Segers, A., Houweling, S., Peters, W., de Laat, J., Boersma, F., Bergamaschi, P., van Velthoven, P., Le Sager, P., Eskes, H., Alkemade, F., Scheele, R., Nédélec, P., & Pätz, H.-W. (2010). The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geoscientific Model Development, 3(2), 445–473. https://doi.org/10.5194/gmd-3-445-2010
  • Hunke, E. C. (2001). Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. Journal of Computational Physics, 170(1), 18–38. https://doi.org/10.1006/jcph.2001.6710
  • Hunke, E. C., & Dukowicz, J. K. (1997). An elastic–viscous–plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9), 1849–1867. https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
  • Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliot, S. (2013). CICE: The Los Alamos Sea ice Model, documentation and software User’s manual, version 5.0. Los Alamos National Laboratory, LA-CC-06–012. https://svn-ccsm-models.cgd.ucar.edu/cesm1/alphas/branches/cesm1_5_alpha04c_timers/components/cice/src/doc/cicedoc.pdf
  • Hurrell, J. W., Holland, M. M., & Gent, P. R. (2013). The community earth system Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94(9), 1339–1360. https://doi.org/10.1175/BAMS-D-12-00121.1
  • Ilıcak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, D., Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C., Chassignet, E., Coward, A., Curry, B., Danabasoglu, G., Danilov, S., Fernandez, E., Fogli, P. G. … Yeager, S. (2016). An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 100, 141–161. https://doi.org/10.1016/j.ocemod.2016.02.004
  • IPCC. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (AR5)
  • Ivanov, V. V., & Golovin, P. N. (2007). Observations and modelling of dense water cascading from the northwestern Laptev Sea Shelf. Journal of Geophysical Research - Oceans, 112(C9). https://doi.org/10.1029/2006JC003882
  • Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J., & Quiroga Jakas, M. C. (2006). Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192(3–4), 362–384. https://doi.org/10.1016/j.ecolmodel.2005.07.010
  • Järvi, L., Grimmond, C. S. B., & Christen, A. (2011). The Surface urban Energy and water balance scheme (SUEWS): Evaluation in Los Angeles and Vancouver. Journal of Hydrology, 411(3–4), 219–237. https://doi.org/10.1016/j.jhydrol.2011.10.001
  • Jochum, M., Jahn, A., Peacock, S., Bailey, D. A., Fasullo, J. T., Kay, J., Levis, S., & Otto-Bliesner, B. (2012). True to Milankovitch: Glacial inception in the new community climate system model. Journal of Climate, 25(7), 2226–2239. https://doi.org/10.1175/JCLI-D-11-00044.1
  • Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., & Kulmala, M. (2009). Smart-SMEAR: On-line data exploration and visualization tool for SMEAR stations. Boreal Environment Research, 14(4), 447–457. https://www.borenv.net/BER/archive/pdfs/ber14/ber14-447.pdf
  • Kaas, E. (2008). A simple and efficient locally mass conserving semi-Lagrangian transport scheme. Tellus A: Dynamic Meteorology and Oceanography, 60(2), 305–320. https://doi.org/10.1111/j.1600-0870.2007.00293.x
  • Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B., Oleson, K. W., Kouznetsov, R. D., Masson, V., & Järvi, L. (2015). Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Quarterly Journal of the Royal Meteorological Society, 142(694), 401–417. https://doi.org/10.1002/qj.2659
  • Kokkola, H., Korhonen, H., Lehtinen, K. E. J., Makkonen, R., Asmi, A., Järvenoja, S., Anttila, T., Partanen, A.-I., Kulmala, M., Järvinen, H., Laaksonen, A., & Kerminen, V.-M. (2008). SALSA – a Sectional Aerosol model for Large Scale Applications. Atmospheric Chemistry & Physics, 8(9), 2469–2483. https://doi.org/10.5194/acp-8-2469-2008
  • Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K. E. J., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S., Lohmann, U., Neubauer, D., Tegen, I., Siegenthaler Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalakis, N., Heald, C. L., & Romakkaniemi, S. (2018). SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0. Geoscientific Model Development, 11(9), 3833–3863. https://doi.org/10.5194/gmd-11-3833-2018
  • Korsholm, U. S. (2009). Integrated Modeling of Aerosol Indirect Effects. Ph.D. thesis, University of Copenhagen, Niels Bohr Institute and Danish Meteorological Institute,
  • Korsholm, U. S., Baklanov, A., Gross, A., Mahura, A., Sass, B. H., & Kaas, E. (2008). Online coupled chemical weather forecasting based on HIRLAM – overview and prospective of enviro-HIRLAM. HIRLAM Newsletter, (54), 151–168.
  • Kulmala, M. (2018). Build a global earth observatory. Nature, 553(7686), 21–23. https://doi.org/10.1038/d41586-017-08967-y
  • Kulmala, M., Lappalainen, H. K., Petäjä, T., Kerminen, V., Viisanen, Y., Matvienko, G., Melnikov, V., Baklanov, A., Bondur, V., Kasimov, N., & Zilitinkevich, S. (2016). Pan-Eurasian Experiment (PEEX) program: Grand Challenges in the Arctic-Boreal Context. Geography, Environment, Sustainability, 9(2), 5–18. https://doi.org/10.15356/2071-9388_02v09_2016_01
  • Kulmala, M., Lappalainen, H. K., Petäjä, T., Kurten, T., Kerminen, V.-M., Viisanen, Y., Hari, P., Baklanov, V., Matvienko, N., Bondur, V., Kasimov, G., Kotlyakov, A., Guo, H., Zilitinkevich, A., Hansson, H.-C., & Ding, S. (2015). Introduction: The Pan-Eurasian Experiment (PEEX) – multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 15(22), 13085–13096. https://doi.org/10.5194/acp-15-13085-2015
  • Kurppa, M., Hellsten, A., Auvinen, M., Vesala, T., Raasch, S., & Järvi, L. (2018). The influence of city-block arrangement on pollutant ventilation and air quality: A large-eddy simulation study. Atmosphere, 9(2), 65. https://doi.org/10.3390/atmos9020065
  • Kurppa, M., Hellsten, A., Roldin, P., Kokkola, H., Tonttila, J., Auvinen, M., Kent, C., Kumar, P., Maronga, B., & Järvi, L. (2019). Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: Model development and first evaluation. Geoscientific Model Development, 12(4), 1403–1422. https://doi.org/10.5194/gmd-12-1403-2019
  • Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., & Tyndall, G. K. (2012). CAM-chem: Description and evaluation of interactive atmospheric chemistry in the community Earth system model. Geoscientific Model Development, 5(2), 369–411. https://doi.org/10.5194/gmd-5-369-2012
  • Lappalainen, H. K., Kerminen, V.-M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J., Vihma, T., Alekseychik, P., Andreae, M. O., Arnold, S. R., Arshinov, M., Asmi, E., Belan, B., Bobylev, L., Chalov, S., Cheng, Y., Chubarova, N. … Kulmala, M. (2016). Pan-Eurasian Experiment (PEEX): Towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry & Physics, 16(22), 14421–14461. https://doi.org/10.5194/acp-16-14421-2016
  • Lappalainen, H. K., Kulmala, M., Kujansuu, J., Petäjä, T., Mahura, A., de Leeuw, G., Zilitinkevich, S., Juustila, M., Kerminen, V.-M., Bornstein, B., Jiahua, Z., Yong, X., Yubao, Q., Dong, L., Jie, L., & Huadong, G. (2018). The silk road agenda of the Pan-Eurasian Experiment (PEEX) program. Big Earth Data, 2(1), 8–35. https://doi.org/10.1080/20964471.2018.1437704
  • Lappalainen, H. K., Petäjä, T., Vihma, T., Räisänen, J., Baklanov, A., Chalov, S., Esau, I., Ezhova, E., Leppäranta, M., Pozdnyakov, D., Pumpanen, J., Andreae, M. O., Arshinov, M., Asmi, E., Bai, J., Bashmachnikov, I., Belan, B., Bianchi, F. … Kulmala, M. (2022). Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry & Physics, 22(7), 4413–4469. https://doi.org/10.5194/acp-22-4413-2022
  • Large, W., McWilliams, J., & Doney, S. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4), 363–403. https://doi.org/10.1029/94RG01872
  • Lenton, T. M., Held, H., Klegler, B., Hall, J. W., Lucht, W., Rahmstort, S., & Schellnhuber, H. J. (2008). Tipping elements of the Earth’s climate system. Proceedings of the National Academy of Sciences, 105(6), 1786–1793. https://doi.org/10.1073/pnas.0705414105
  • Liu, X., & Ghan, S. (2010). A modal aerosol model implementation in the Community Atmosphere Model, version 5 (CAM5). Journal of Atmospheric Sciences.
  • Li, S., Zhang, W., Zheng, X., Li, Y., Han, S., Wang, R., Wang, K., Yao, Z., Liu, C., & Zhang, C. (2022). Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields. Biogeosciences, 19(12), 3001–3019. https://doi.org/10.5194/bg-19-3001-2022
  • Li, S., Zhu, B., Zheng, X., Hu, P., Han, S., Fan, J., Wang, T., Wang, R., Wang, K., Yao, Z., Liu, C., Zhang, W., & Li, Y. (2023). Enabling a process-oriented hydro-biogeochemical model to simulate soil erosion and nutrient losses. Biogeosciences, 20(16), 3555–3572. https://doi.org/10.5194/bg-20-3555-2023
  • Madec, G., & the NEMO team. (2008). NEMO ocean engine. Note du Pˆole de mod´elisation, Institut Pierre-Simon Laplace (IPSL), France, No 27. Institut Pierre-Simon Laplace.
  • Madsen, K. S., Rasmussen, T. A. S., Ribergaard, M. H., & Ringgaard, M. (2016). High resolution sea-ice modelling and validation of the Arctic with focus on South Greenland waters, 2004–2013. Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85(2), 101–105. https://doi.org/10.2312/polfor.2016.006
  • Mahura, A., Amstrup, B., Nuterman, R., Yang, X., & Baklanov, A. (2017). Multi-Scale Enviro-HIRLAM Forecasting of Weather and Atmospheric Composition over China and its Megacities. Geophysical Research Abstracts, 19, EGU2017–9564.
  • Mahura, A., & Baklanov, A. (2004). Probabilistic indicators of atmospheric transport for regional monitoring and emergency preparedness systems. Environment International, 29(8), 1063‐1069. https://doi.org/10.1016/S0160-4120(03)00100-4
  • Mahura, A., Baklanov, A., & Sørensen, J. H. (2009). Estimation of Potential Impact on Copenhagen, Denmark, due to Accidental Releases at Nuclear Risk Sites. International Journal of Environment and Pollution, 39(1‐2), 159‐167. https://doi.org/10.1504/IJEP.2009.027149
  • Mahura, A. G., Baklanov, A., Sørensen, J. H., Parker, F. L., Novikov, V., Brown, K., & Compton, K. L. (2005). Assessment of potential atmospheric transport and deposition patterns due to Russian pacific fleet operations. Environmental Monitoring and Assessment, 101(1‐3), 261–287. https://doi.org/10.1007/s10661-005-0295-7
  • Mahura, A., Gonzalez-Aparicio, I., Nuterman, R., & Baklanov, A. (2018). Seasonal impact analysis on population due to continuous sulphur emissions from severonikel smelters of the Kola Peninsula. Geography, Environment, Sustainability, 11(1), 130–144. https://doi.org/10.24057/2071-9388-2018-11-1-130-144
  • Mahura, A., Petersen, C., Baklanov, A., & Amstrup, B. (2008). Evaluation of building effect parameterization module for urbanized numerical weather prediction modelling. In K. Klysika, J. Wibig & K. Fortuniaka (Eds.), Urban Climate and Bioclimate (pp. 371–380). Univesity of Lodz.
  • Mahura, A., Petersen, C., Baklanov, A., Amstrup, B., Korsholm, U. S., & Sattler, K. (2008). Verification of long-term DMI-HIRLAM NWP Peninsurbanisation and building effect parameterization modules. HIRLAM Newsletter, (53), 50–60.
  • Malguzzi, P., Buzzi, A., & Drofa, O. (2011). The meteorological global model GLOBO at the ISAC-CNR of Italy assessment of 1.5 yr of experimental use for medium-range weather forecasts. Weather and Forecasting, 26(6), 1045–1055. https://doi.org/10.1175/WAF-D-11-00027.1
  • Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F. … Raasch, S. (2020). Overview of the PALM model system 6.0. Geoscientific Model Development, 13(3), 1335–1372. https://doi.org/10.5194/gmd-13-1335-2020
  • Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., & Raasch, S. (2015). The Parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geoscientific Model Development, 8(8), 2515–2551. https://doi.org/10.5194/gmd-8-2515-2015
  • Medvedeva, A. Y., Arkhipkin, V. S., Myslenkov, S. A., & Zilitinkevich, S. S. (2015). Wave climate of the Baltic Sea following the results of the SWAN spectral model application. Moscow University Bulletin, Series 5, Geography, 1, 12–22. https://vestnik5.geogr.msu.ru/jour/article/view/49/50
  • Miles, V., Esau, I., & Pettersson, L. H. (2023). Using web GIS to promote stakeholder understanding of scientific results in sustainable urban development: A case study in Bergen, Norway. Sustainable Development. https://doi.org/10.1002/sd.2787
  • Mogensen, D., Smolander, S., Sogachev, A., Zhou, L., Sinha, V., Guenther, A., Williams, J., Nieminen, T., Kajos, M. K., Rinne, J., Kulmala, M., & Boy, M. (2011). Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmospheric Chemistry and Physics, 11(18), 9709–9719. https://doi.org/10.5194/acp-11-9709-2011
  • Moore, J. K., Doney, S., Kleypas, J., Glover, D., & Fung, I. (2002). An intermediate complexity marine ecosystem model for the global domain. Deep sea research part II. Deep Sea Research Part II: Topical Studies in Oceanography, 49(1–3), 403–462. https://doi.org/10.1016/S0967-0645(01)00108-4
  • Moore, J. K., Doney, S. C., & Lindsay, K. (2004). Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 18(4). https://doi.org/10.1029/2004GB002220
  • Morrison, H., & Gettelman, A. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the NCAR community atmosphere Model (CAM3), part I: Description and numerical tests. Journal of Climate, 21(15), 3642–3659. https://doi.org/10.1175/2008JCLI2105.1
  • Myslenkov, S. A., Golubkin, P. A., & Zabolotskikh, E. V. (2016). Evaluation of wave model in the Barents Sea under winter cyclone conditions. Moscow University Bulletin, Series 5, Geography, 6, 26–32. https://vestnik5.geogr.msu.ru/jour/article/view/255/256
  • Neale, R., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J.-F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D. … Taylor, M. (2012). Description of the NCAR community atmosphere Model (CAM5.0). NCAR/TN-486+str, NCAR Technical Note, 283.
  • Nikiforov, Y., & Shpaikher, A. (1980). Features of the formation of hydrological regime large scale variations in the Arctic Ocean. Hydrometeoizdat.
  • Nuterman, R., Korsholm, U., Zakey, A., Nielsen, K. P., Sørensen, B., Mahura, A., Rasmussen, A., Mažeikis, A., Gonzalez-Aparicio, I., Morozova, E., Sass, B. H., Kaas, E., & Baklanov, A. (2013). New developments in Eviro-HIRLAM online integrated modeling system. Geophysical research abstracts, 15, EGU2013–12520–1.
  • Nuterman, R., Mahura, A., Baklanov, A., Kurganskiy, A., Amstrup, B., & Kass, E. (2015). Enviro-HIRLAM applicability for black carbon studies in Arctic. Geophysical Research Abstracts, 17, EGU2015-1571.
  • Okladnikov, I. G., Titov, A. G., Shulgina, T. M., Gordov, E. P., Yu, V., BogomolovYu, V. M., Suschenko, S. P., & Skvortsov, A. V. (2013). Software for analysis and visualization of climate change monitoring and forecasting data. Journal Numerical Methods and Programming, 14, 123–131 https://en.num-meth.ru/index.php/journal.
  • Overland, J., Francis, J. A., Hall, R., Hanna, E., Kim, S., & Vihma, T. (2015). The melting arctic and midlatitude weather patterns: Are they connected? Journal of Climate, 28(20), 7917–7932. https://doi.org/10.1175/JCLI-D-14-00822.1
  • PEEX. (2015). Pan-Eurasian (PEEX) science plan. H. K. Lappalainen, M. Kulmala, S. Zilitinkevich. Eds., University of Helsinki, Helsinki.
  • Penenko, V., Baklanov, A., Tsvetova, E., & Mahura, A. (2012). Direct and inverse problems in a variational concept of environmental modelling. Pure and Applied Geophysics, 169(3), 447–465. https://doi.org/10.1007/s00024-011-0380-5
  • Penenko, A. V., Penenko, V. V., & Tsvetova, E. A. (2016). Sequential data assimilation algorithms for air quality monitoring models based on a weak-constraint variational principle. Numerical Analysis & Applications, 9(4), 312–325. https://doi.org/10.1134/s1995423916040054
  • Penenko, V. V., Penenko, A. V., & Tsvetova, E. A. (2017). Variational approach to the study of processes of geophysical hydro-thermodynamics with assimilation of observation data. Journal of Applied Mechanics and Technical Physics, 58(5), 771–778. https://doi.org/10.1134/S0021894417050029
  • Penenko, A., Penenko, V., Tsvetova, E., Grishina, A., & Antokhin, P. (2018). Sequential variational data assimilation algorithms at the splitting stages of a numerical atmospheric chemistry Model. Large-Scale Scientific Computing, Springer International Publishing. https://doi.org/10.1007/978-3-319-73441-5_59
  • Penenko, V., & Tsvetova, E. (2008). Orthogonal decomposition methods for inclusion of climatic data into environmental studies. Ecological Modelling, 217(3–4), 279–291. https://doi.org/10.1016/j.ecolmodel.2008.06.004
  • Penenko, V. V., Tsvetova, E. A., & Penenko, A. V. (2015a). Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry. Izvestiya, Atmospheric and Oceanic Physics, 51(3), 311–319. https://doi.org/10.1134/S0001433815030093
  • Penenko, V. V., Tsvetova, E. A., & Penenko, A. V. (2015b). Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition quality. Russian Meteorology and Hydrology, 40(6), 365–373. https://doi.org/10.3103/S1068373915060023
  • Petäjä, T., Ganzei, K. S., Lappalainen, H. K., Tabakova, K., Makkonen, R., Räisänen, J., Chalov, S., Kulmala, M., Zilitinkevich, S., Ya, P., Baklanov, R. B. S., Mishina, N. V., Egidarev, E. G., & Kondrat’ev, I. I. (2021). Research agenda for the Russian Far East and utilization of multi-platform comprehensive environmental observations. International Journal of Digital Earth, 14(3), 311–337. https://doi.org/10.1080/17538947.2020.1826589
  • Peters, W., Krol, M. C., van der Werf, G. R., Houweling, S., Jones, C. D., Hughes, J., Schaefer, K., Masarie, K. A., Jacobson, A. R., Miller, J. B., Cho, C. H., Ramonet, M., Schmidt, M., Ciattaglia, L., Apadula, F., Heltai, D., Meinhardt, F., DiSarra, A. G. … Tans, P. P. (2010). Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 16(4), 1317–1337. https://doi.org/10.1111/j.1365-2486.2009.02078.x
  • Ponsoni, L., Ribergaard, M. H., Nielsen-Englyst, P., Wulf, T., Buus-Hinkler, J., Kreiner, M. B., & Rasmussen, T. A. S. (2023). Greenlandic sea ice products with a focus on an updated operational forecast system. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.979782
  • Poulsen, M. B., Jochum, M., & Nuterman, R. (2018). Parameterized and resolved Southern ocean eddy compensation. Ocean Modelling, 124, 1–15. https://doi.org/10.1016/j.ocemod.2018.01.008
  • Previdi, M., Smith, K. L., & Polvani, L. M. (2021). Arctic amplification of climate change: A review of underlying mechanisms. Environmental Research Letters, 16(9), 093003. https://doi.org/10.1088/1748-9326/ac1c29
  • Pulliainen, J., Aurela, M., Laurila, T., Aalto, T., Takala, M., Salminen, M., Kulmala, M., Barr, A., Heimann, M., Lindroth, A., Laaksonen, A., Derksen, C., Mäkelä, A., Markkanen, T., Lemmetyinen, J., Susiluoto, J., Dengel, S., Mammarella, I., Tuovinen, J.-P., & Vesala, T. (2017). Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National Academy of Sciences, 114(42), 11081–11086. https://doi.org/10.1073/pnas.1707889114
  • Pyanova, E. A., Penenko, V. V., & Faleychik, L. M. (2014). Simulation of atmospheric dynamics and air quality in the Baikal region, Proceedings SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics, 929247 25 Nov (2014); https://doi.org/10.1117/12.2074998
  • Rametsteiner, E., Nilsson, S., Bottcher, H., Havlik, P., Kraxner, F., Leduc, S., Obersteiner, M., Rydzak, F., Schneider, U., Schwab, D., & Willmore, L. (2007). Study of the effects of globalization on the economic viability of EU Forestry. Final Report of the AGRI Tender Project: AGRI-G4-2006-06, IIASA, 16p.
  • Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 168. https://doi.org/10.1038/s43247-022-00498-3
  • Redler, R., Valcke, S., & Ritzdorf, H. (2010). OASIS4 – a coupling software for next generation earth system modelling. Geoscientific Model Development, 3(1), 87–104. https://doi.org/10.5194/gmd-3-87-2010
  • Richards, N. A. D., Arnold, S. R., Chipperfield, M. P., Miles, G., Rap, A., Siddans, R., Monks, S. A., & Hollaway, M. J. (2013). The Mediterranean summertime ozone maximum: Global emission sensitivities and radiative impacts. Atmospheric Chemistry and Physics, 13(5), 2331–2345. https://doi.org/10.5194/acp-13-2331-2013
  • Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., & Vivier, F. (2015). The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geoscientific Model Development, 8(10), 2991–3005. https://doi.org/10.5194/gmd-8-2991-2015
  • Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J., & Victor, D. G. (2016). Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nature Climate Change, 6(3), 286–289. https://doi.org/10.1038/nclimate2880
  • Scott, C. E., Arnold, S. R., Monks, S. A., Asmi, A., Paasonen, P., & Spracklen, D. V. (2018). Substantial large-scale feedbacks between natural aerosols and climate. Nature Geoscience, 11(1), 44–48. https://doi.org/10.1038/s41561-017-0020-5
  • She, J., Berg, P., & Berg, J. (2007). Bathymetry impacts on water exchange modelling through the Danish straits. Journal of Marine Systems, 65(1–4), 450–459. https://doi.org/10.1016/j.jmarsys.2006.01.017
  • She, J., Christensen, A., Garaventa, F., Lips, U., Murawski, J., Ntoumas, M., & Tsiaras, K. (2023). Developing realistic models for assessing marine plastic pollution in semi-enclosed seas. In Eds. E. S. Kappel, V. Cullen, M. J. Costello, L. Galgani, C. Gordó-Vilaseca, A. Govindarajan, S. Kouhi, C. Lavin, L. McCartin, J. D. Müller, B. Pirenne, T. Tanhua, Q. Zhao, & S. Zhao. Frontiers in ocean observing: Emerging technologies for understanding and managing a changing ocean (pp. 54–57). Oceanography, 36 (Supplement 1) https://doi.org/10.5670/oceanog.2023.s1.17
  • She, J., & Murawski, J. (2018). Towards seamless modelling for the Baltic Sea. In Operational Oceanography serving Sustainable Marine Development. Proceedings of the Eight EuroGOOS International Conference, 3-5 October 2017, N. E. B. Bergen, V. Fernández, D. Eparkhina, P. Gorringe, & G. Nolan (Eds.) EuroGOOS. Brussels, Belgium. ISBN 978-2-9601883-3-2. 516 pp. p233–241
  • Shtabkin Yu, A., Moiseenko, K. B., Skorokhod, A. I., Vasileva, A. V., & Heimann, M. (2016). Sources of and variations in tropospheric CO in central Siberia: Numerical experiments and observations at the zotino tall tower observatory. Izvestiya, Atmospheric and Oceanic Physics, 52(1), 45–56. https://doi.org/10.1134/S0001433816010096
  • Shulgina, T. M., Gordov, E. P., Okladnikov, I. G., Titov, A. G., Yu, E., Genina, N. P., Kuzhevskaya, G. I. V., & Akhmetshina, A. S. (2013). Software complex for a regional climate change analysis. Vestnik NGU, Series: Information Technologies, 11(1), 124–131.
  • Shvidenko, A., & Schepaschenko, D. (2014). Carbon Budget of Russian forests. Siberian Journal of Forest Science, 1, 69–92. https://pure.iiasa.ac.at/10782/1/0fd7fb4421fd068bc0f1b9b578ad5d55.pdf
  • Shvidenko, A., Schepaschenko, D., McCallum, I., & Nilsson, S. (2010). Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policy makers? Climatic Change, 103(1–2), 137–157. https://doi.org/10.1007/s10584-010-9918-2
  • Shvidenko, A., Shepasenko, D., Kraxner, F., & Fritz, S. (2015). Full verified carbon account of forest ecosytems as a fuzzy system: An attempt to assess uncertainty. In Proceedings of 4th International Workshop on Uncertainty in Atmospheric Emissions, 7-9 October, Krakow, Poland, рр.1–8
  • Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., Hsu, H.-M., Jochum, M., Lawrence, D., Muñoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.-H., & Vertenstein, M. (2014). A new synoptic scale resolving global climate simulation using the community earth system Model. Journal of Advances in Modeling Earth Systems, 6(4), 1065–1094. https://doi.org/10.1002/2014MS000363
  • Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., & Romanovsky, V. E. (2022). The changing thermal state of permafrost. Nature Reviews Earth and Environment, 3(1), 10–23. https://doi.org/10.1038/s43017-021-00240-1
  • Smith, B., Prentice, I. C., & Sykes, M. T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 10(6), 621–637. https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x
  • Smolander, S., He, Q., Mogensen, D., Zhou, L., Bäck, J., Ruuskanen, T., Noe, S., Guenther, A., Aaltonen, H., Kulmala, M., & Boy, M. (2014). Comparing three vegetation monoterpene emission models to measured gas concentrations with a Model of meteorology. Air Chemistry and Chemical Transport Biogeosciences, 11(19), 5425–5443. https://doi.org/10.5194/bg-11-5425-2014
  • Smyshlyaev, S. P., Galin, V. Y., Shaariibuu, G., & Motsakov, M. A. (2010). Modeling the variability of gas and Aerosol Components in the stratosphere of polar regions. Izvestiya, Atmospheric and Oceanic Physics, 46(3), 265–280. https://doi.org/10.1134/S0001433810030011
  • Smyshlyaev, S. P., Mareev, E. A., & Galin, V. Y. (2010). Simulation of the impact of thunderstorm activity on atmospheric gas composition. Izvestiya, Atmospheric and Oceanic Physics, 46(4), 451–467. https://doi.org/10.1134/S0001433810040043
  • Sofiev, M., Vira, J., Kouznetsov, R., Prank, M., Soares, J., & Genikhovich, E. (2015). Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin. Geoscientific Model Development, 8(11), 3497–3522. https://doi.org/10.5194/gmd-8-3497-2015
  • Sørensen, H. S., Baklanov, A., & Hoe, S. (2007). The Danish emergency response Model of the atmosphere (DERMA). Journal of Environmental Radioactivity, 96(1–3), 122–129. https://doi.org/10.1016/j.jenvrad.2007.01.030
  • Sørensen, B., Kaas, E., & Korsholm, U. S. (2013). A mass-conserving and multi-tracer efficient transport scheme in the online integrated enviro-HIRLAM model. Geoscientific Model Development, 6(4), 1029–1042. https://doi.org/10.5194/gmd-6-1029-2013
  • Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., & Mann, G. W. (2005). A global offline model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmospheric Chemistry and Physics, 5(8), 2227–2252. https://doi.org/10.5194/acp-5-2227-2005
  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5(9), 2461–2474. https://doi.org/10.5194/acp-5-2461-2005
  • Taylor, P. C., Boeke, R. C., Boisvert, L. N., Feldl, N., Henry, M., Huang, Y., Langen, P. L., Liu, W., Pithan, F., Sejas, S. A., & Tan, I. (2022). Process drivers, inter-model spread, and the path forward: A review of amplified arctic warming. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.758361
  • Tettamanti, R., Malguzzi, P., & Zardi, D. (2002). Numerical simulation of katabatic winds with a non-hydrostatic meteorological model. Polar Atmospheres. 1, 1–95. ISSN 1591-3902.
  • Tonttila, J., Maalick, Z., Raatikainen, T., Kokkola, H., Kühn, T., & Romakkaniemi, S. (2017). UCLALES–SALSA v1.0: A large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation. Geoscientific Model Development, 10(1), 169–188. https://doi.org/10.5194/gmd-10-169-2017
  • Tsamados, M., Feltham, D. L., & Wilchinsky, A. V. (2013). Impact of a new anisotropic rheology on simulations of arctic sea ice. Journal Geophysical Research - Oceans, 118(1), 91–107. https://doi.org/10.1029/2012JC007990
  • Tsuruta, A., Aalto, T., Backman, L., Hakkarainen, J., van der Laan-Luijkx, I. T., Krol, M. C., Spahni, R., Houweling, S., Laine, M., Dlugokencky, E., Gomez-Pelaez, A. J., van der Schoot, M., Langenfelds, R., Ellul, R., Arduini, J., Apadula, F., Gerbig, C., Feist, D. G. … Peters, W. (2017). Global methane emission estimates for 2000-2012 from CarbonTracker Europe-CH4 v1.0. Geoscientific Model Development, 10(3), 1261–1289. https://doi.org/10.5194/gmd-10-1261-2017
  • Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., Parker, D., Zalles, V., Lima, A., Kommareddy, I., Song, X.-P., Wang, L., & Harris, N. (2022). Global trend of forest loss due to fire from 2001 to 2019. Frontiers in Remote Sensing, 3. https://doi.org/10.3389/frsen.2022.825190
  • Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., & Morales Maqueda, M. A. (2009). Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling, 27(1–2), 33–53. https://doi.org/10.1016/j.ocemod.2008.10.005
  • van Noije, T., Bergman, T., Le Sager, P., O’Donnell, D., Makkonen, R., Gonçalves-Ageitos, M., Döscher, R., Fladrich, U., von Hardenberg, J., Keskinen, J.-P., Korhonen, H., Laakso, A., Myriokefalitakis, S., Ollinaho, P., Pérez García-Pando, C., Reerink, T., Schrödner, R., Wyser, K., & Yang, S. (2021). EC-Earth3-AerChem: A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6. Geoscientific Model Development, 14(9), 5637–5668. https://doi.org/10.5194/gmd-14-5637-2021
  • van Noije, T. P. C., Le Sager, P., Segers, A. J., van Velthoven, P. F. J., Krol, M. C., Hazeleger, W., Williams, A. G., & Chambers, S. D. (2014). Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth. Geoscientific Model Development, 7(5), 2435–2475. https://doi.org/10.5194/gmd-7-2435-2014
  • Vignati, E., Wilson, J., & Stier, P. (2004). M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. Journal of Geophysical Research - Atmospheres, 109(D22). https://doi.org/10.1029/2003JD004485
  • Vihma, T., Uotila, P., Sandven, S., Pozdnyakov, D., Makshtas, A., Pelyasov, A., Pirazzini, R., Danielsen, F., Chalov, S., Lappalainen, H. K., Ivanov, V., Frolov, I., Albin, A., Cheng, B., Dobrolyubov, S., Arkhipkin, V., Mуslenkov, S., Petäjä, T., & Kulmala, M. (2019). Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmospheric Chemistry and Physics, 19(3), 1941–1970. https://doi.org/10.5194/acp-19-1941-2019
  • Ward, H., Kotthaus, S., Järvi, L., & Grimmond, C. S. B. (2016). Surface urban energy and water balance scheme (SUEWS): Development and evaluation at two UK sites. Urban Climate, 18, 1–32. https://doi.org/10.1016/j.uclim.2016.05.001
  • Wilchinsky, A. V., & Feltham, D. (2006). Modelling the rheology of sea ice as a collection of diamond-shaped floes. Journal of Non-Newtonian Fluid Mechanics, 138(1), 22–32. https://doi.org/10.1016/j.jnnfm.2006.05.001
  • Wolf-Grosse, T., Esau, I., & Reuder, J. (2017). Sensitivity of local air quality to the interplay between small- and large-scale circulations: A large-eddy simulation study. Atmospheric Chemistry and Physics, 17(11), 7261–7276. https://doi.org/10.5194/acp-17-7261-2017
  • Wolf, T., Pettersson, L. H., & Esau, I. (2020). A very high-resolution assessment and modelling of urban air quality. Atmospheric Chemistry and Physics, 20(2), 625–647. https://doi.org/10.5194/acp-20-625-2020
  • Wolf, T., Pettersson, L. H., & Esau, I. (2021). Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: Optimization of mitigation actions based on large-eddy simulations. Atmospheric Chemistry and Physics, 21(16), 12463–12477. https://doi.org/10.5194/acp-21-12463-2021
  • WWRP. (2015). Seamless prediction of the earth system: From minutes to months. WMO-No. 1156, 483p., ISBN 978-92-63-11156-2
  • Yantosca, B., Sulprizio, M., Lundgren, L., Xu, J., & GEOS-Chem Support Team. (2016). GEOS-Chem v11-01 Online User’s Guide, http://acmg.seas.harvard.edu/geos/doc/man/;Dec2016
  • Zhang, W., Li, Y., Zhu, B., Zheng, X., Liu, C., Tang, J., Su, F., Zhang, C., Ju, X., & Deng, J. (2018). A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment. Science of the Total Environment, 616-617, 305–317. https://doi.org/10.1016/j.scitotenv.2017.09.261
  • Zhang, Y., Mallet, C., Bocquet, M., Seigneur, V., & Baklanov, A. (2012b). Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects atmospheric environment. Atmospheric Environment, 60, 656–676. https://doi.org/10.1016/j.atmosenv.2012.02.041
  • Zhang, Y., Seigneur, C., Bocquet, M., Mallet, V., & Baklanov, A. (2012a). Real-time air quality forecasting, Part I: History, techniques, and current status. Atmospheric Environment, 60, 632–655. https://doi.org/10.1016/j.atmosenv.2012.06.031
  • Zhang, W., Yao, Z., Li, S., Zheng, X., Zhang, H., Ma, L., Wang, K., Wang, R., Liu, C., Han, S., Deng, J., & Li, Y. (2021). An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils. Biogeosciences, 18(13), 4211–4225. https://doi.org/10.5194/bg-18-4211-2021
  • Zhang, W., Yao, Z., Zheng, X., Liu, C., Wang, R., Wang, K., Li, S., Han, S., Zuo, Q., & Shi, J. (2020). Effects of fertilization and stand age on N2O and NO emissions from tea plantations: A site-scale study in a subtropical region using a modified biogeochemical model. Atmospheric Chemistry and Physics, 20(11), 6903–6919. https://doi.org/10.5194/acp-20-6903-2020
  • Zhou, P., Ganzeveld, L., Rannik, Ü., Zhou, L., Gierens, R., Taipale, D., Mammarella, I., & Boy, M. (2017). Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model. Atmospheric Chemistry and Physics, 17(2), 1361–1379. https://doi.org/10.5194/acp-17-1361-2017
  • Zhou, P., Ganzeveld, L., Taipale, D., Rannik, U. ̈., Rantala, P., Rissanen, M. P., Chen, D., & Boy, M. (2017). Boreal forest BVOC exchange: Emissions versus in-canopy sinks. Atmospheric Chemistry and Physics, 17(23), 14309–14332. https://doi.org/10.5194/acp-17-14309-2017
  • Zhou, L., Nieminen, T., Mogensen, D., Smolander, S., Rusanen, A., Kulmala, M., & Boy, M. (2014). SOSAA — a new model to simulate the concentrations of organic vapours, sulphuric acid and aerosols inside the ABL — part 2: Aerosol dynamics and one case study at a boreal forest site. Boreal Environment Research, 19(suppl. B), 237–256.
  • Zilitinkevich, S., Kulmala, M., Esau, I., & Baklanov, A. (2015). Megacities – refining models to personal environment. WMO Bulletin, 64(1), 20–22.
  • Zimmer, W., Bruggemann, N., Emeis, S., Giersch, C., Lehning, A., Steinbrecher, R., & Schnitzler, J.-P. (2000). Process-based modelling of isoprene emission by oak leaves. Plant, Cell and Environment, 23(6), 585–595. https://doi.org/10.1046/j.1365-3040.2000.00578.x
  • Zou, Y., Wang, Y., Zhang, Y., & Koo, J. H. (2017). Arctic sea ice, Eurasia snow, and extreme winter haze in China. Science Advances, 3(3). https://doi.org/10.1126/sciadv.1602751