10,353
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1145-1173 | Received 27 Nov 2020, Accepted 23 Mar 2021, Published online: 12 Apr 2021

References

  • Martin-Acebes MA, Saiz JC, Saiz JC. West Nile virus: a re-emerging pathogen revisited. World J Virol. 2012;1(2):51–70.
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3(1):13–22.
  • Kuhn RJ, Dowd KA, Beth Post C, et al. Shake, rattle, and roll: impact of the dynamics of flavivirus particles on their interactions with the host. Virology. 2015;479-480:508–517.
  • Brinton MA. Replication cycle and molecular biology of the West Nile virus. Viruses. 2013;6(1):13–53.
  • Daffis S, Szretter KJ, Schriewer J, et al. 2ʹ-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468(7322):452–456.
  • Barrows NJ, Campos RK, Liao KC, et al. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev. 2018;118(8):4448–4482.
  • Bidet K, Garcia-Blanco MA. Flaviviral RNA Structures and Their Role in Replication and Immunity. Adv Exp Med Biol. 2018;1062:45–62.
  • Schrauf S, Mandl CW, Bell-Sakyi L, et al. Extension of flavivirus protein C differentially affects early RNA synthesis and growth in mammalian and arthropod host cells. J Virol. 2009;83(21):11201–11210.
  • Yang MR, Lee SR, Oh W, et al. West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol. 2008;10(1):165–176.
  • Medigeshi GR, Hirsch AJ, Brien JD, et al. West nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol. 2009;83(12):6125–6134.
  • Moudy RM, Zhang B, Shi PY, et al. West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. Virology. 2009;387(1):222–228.
  • Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J. 2016;13(1):131.
  • Mackenzie JM, Khromykh AA, Jones MK, et al. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology. 1998;245(2):203–215.
  • Avirutnan P, Fuchs A, Hauhart RE, et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med. 2010;207(4):793–806.
  • Melian EB, Hinzman E, Nagasaki T, et al. NS1ʹ of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol. 2010;84(3):1641–1647.
  • Leung JY, Pijlman GP, Kondratieva N, et al. Role of nonstructural protein NS2A in flavivirus assembly. J Virol. 2008;82(10):4731–4741.
  • Liu WJ, Wang XJ, Clark DC, et al. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol. 2006;80(5):2396–2404.
  • Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, et al. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A. 2003;100(24):14333–14338.
  • Blazquez AB, Martin-Acebes MA, Saiz JC. Amino acid substitutions in the non-structural proteins 4A or 4B modulate the induction of autophagy in West Nile virus infected cells independently of the activation of the unfolded protein response. Front Microbiol. 2014;5:797.
  • Shiryaev SA, Chernov AV, Aleshin AE, et al. NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. J Gen Virol. 2009;90(9):2081–2085.
  • Evans JD, Seeger C. Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol. 2007;81(21):11809–11816.
  • Martin-Acebes MA, Blazquez AB, Jimenez De Oya N, et al. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids. PLoS One. 2011;6(9):e24970.
  • Krishnan MN, Sukumaran B, Pal U, et al. Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol. 2007;81(9):4881–4885.
  • Van Der Schaar HM, Rust MJ, Chen C, et al. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 2008;4(12):e1000244.
  • Martin-Acebes MA, Saiz JC. A West Nile virus mutant with increased resistance to acid-induced inactivation. J Gen Virol. 2011;92(4):831–840.
  • Gillespie LK, Hoenen A, Morgan G, et al. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol. 2010;84(20):10438–10447.
  • Mackenzie JM, Khromykh AA, Parton RG. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe. 2007;2(4):229–239.
  • Fernandez-Garcia MD, Meertens L, Bonazzi M, et al. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. J Virol. 2011;85(6):2980–2989.
  • Evans JD, Crown RA, Sohn JA, et al. West Nile virus infection induces depletion of IFNAR1 protein levels. Viral Immunol. 2011;24(4):253–263.
  • Medigeshi GR, Lancaster AM, Hirsch AJ, et al. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol. 2007;81(20):10849–10860.
  • Blazquez AB, Escribano-Romero E, Merino-Ramos T, et al. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol. 2014;5:266.
  • Parquet MC, Kumatori A, Hasebe F, et al. West Nile virus-induced bax-dependent apoptosis. FEBS Lett. 2001;500(1–2):17–24.
  • Rizzoli A, Jimenez-Clavero MA, Barzon L, et al. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. Euro Surveill. 2015;20(20). DOI:10.2807/1560-7917.ES2015.20.20.21135.
  • May FJ, Davis CT, Tesh RB, et al. Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol. 2011;85(6):2964–2974.
  • Bakhshi H, Mousson L, Vazeille M, et al. High Transmission Potential of West Nile virus lineage 1 for Cx. pipiens s.l. of Iran. Viruses. 2020;12(4):397.
  • Charrel RN, Brault AC, Gallian P, et al. Evolutionary relationship between old world West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe. Virology. 2003;315(2):381–388.
  • Fall G, Diallo M, Loucoubar C, et al. Vector competence of Culex neavei and Culex quinquefasciatus (Diptera: culicidae) from Senegal for lineages 1, 2, Koutango and a putative new lineage of West Nile virus. Am J Trop Med Hyg. 2014;90(4):747–754.
  • Pachler K, Lebl K, Berer D, et al. Putative New West Nile Virus Lineage in Uranotaenia unguiculata Mosquitoes, Austria, 2013. Emerg Infect Dis. 2014;20(12):2119–2122.
  • Ciota AT. West Nile virus and its vectors. Curr Opin Insect Sci. 2017;22:28–36.
  • Engler O, Savini G, Papa A, et al. European surveillance for West Nile virus in mosquito populations. Int J Environ Res Public Health. 2013;10(10):4869–4895.
  • Fonseca DM, Smith JL, Wilkerson RC, et al. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg. 2006;74(2):284–289.
  • Clements AN (2011) The biology of mosquitoes. Transmission of Viruses and Interactions with Bacteria.
  • Gomes B, Sousa CA, Vicente JL, et al. Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: culicidae) in a region of high hybridization. Parasit Vectors. 2013;6(1):93.
  • Molaei G, Andreadis TG, Armstrong PM, et al. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, Northeastern United States. Emerg Infect Dis. 2006;12(3):468–474.
  • Saiz JC, Vazquez-Calvo A, Blazquez AB, et al. Zika Virus: the Latest Newcomer. Front Microbiol. 2016;7:496.
  • Birnberg L, Talavera S, Aranda C, et al. Field-captured Aedes vexans (Meigen, 1830) is a competent vector for rift valley fever phlebovirus in Europe. Parasit Vectors. 2019;12(1):484.
  • Khan SA, Chowdhury P, Choudhury P, et al. Detection of West Nile virus in six mosquito species in synchrony with seroconversion among sentinel chickens in India. Parasit Vectors. 2017;10(1):13.
  • Higgs S, Snow K, Gould EA. The potential for West Nile virus to establish outside of its natural range: a consideration of potential mosquito vectors in the United Kingdom. Trans R Soc Trop Med Hyg. 2004;98(2):82–87.
  • Ciota AT, Kramer LD. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses. 2013;5(12):3021–3047.
  • Azar SR, Weaver SC. Vector competence: what has Zika virus taught us? Viruses. 2019;11(9):867.
  • Jerzak G, Bernard KA, Kramer LD, et al. Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol. 2005;86(8):2175–2183.
  • Maharaj PD, Langevin SA, Bolling BG, et al. N-linked glycosylation of the West Nile virus envelope protein is not a requisite for avian virulence or vector competence. PLoS Negl Trop Dis. 2019;13(7):e0007473.
  • Moudy RM, Meola MA, Morin LL, et al. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg. 2007;77(2):365–370.
  • Worwa G, Hutton AA, Frey M, et al. Increases in the competitive fitness of West Nile virus isolates after introduction into California. Virology. 2018;514:170–181.
  • Duggal NK, Reisen WK, Fang Y, et al. Genotype-specific variation in West Nile virus dispersal in California. Virology. 2015;485:79–85.
  • Brault AC, Huang CY, Langevin SA, et al. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet. 2007;39(9):1162–1166.
  • Fitzpatrick KA, Deardorff ER, Pesko K, et al. Population variation of West Nile virus confers a host-specific fitness benefit in mosquitoes. Virology. 2010;404(1):89–95.
  • Grubaugh ND, Fauver JR, Ruckert C, et al. Mosquitoes transmit unique West Nile virus populations during each feeding episode. Cell Rep. 2017;19(4):709–718.
  • Ciota AT, Ehrbar DJ, Van Slyke GA, et al. Quantification of intrahost bottlenecks of West Nile virus in Culex pipiens mosquitoes using an artificial mutant swarm. Infect Genet Evol. 2012;12(3):557–564.
  • Brackney DE, Pesko KN, Brown IK, et al. West Nile virus genetic diversity is maintained during transmission by Culex pipiens quinquefasciatus mosquitoes. PLoS One. 2011;6(9):e24466.
  • Grubaugh ND, Weger-Lucarelli J, Murrieta RA, et al. Genetic drift during systemic arbovirus infection of mosquito vectors leads to decreased relative fitness during host switching. Cell Host Microbe. 2016;19(4):481–492.
  • Brackney DE, Beane JE, Ebel GD. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog. 2009;5(7):e1000502.
  • Nelms BM, Fechter-Leggett E, Carroll BD, et al. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: culicidae) Mosquitoes. J Med Entomol. 2013;50(2):371–378.
  • Komar N, Langevin S, Hinten S, et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003;9(3):311–322.
  • Garmendia AE, Van Kruiningen HJ, French RA, et al. Recovery and identification of West Nile virus from a hawk in winter. J Clin Microbiol. 2000;38(8):3110–3111.
  • Jimenez De Oya N, Escribano-Romero E, Camacho MC, et al. A recombinant subviral particle-based vaccine protects Magpie (Pica pica) against West Nile virus infection. Front Microbiol. 2019;10:1133.
  • Sejvar JJ. Clinical manifestations and outcomes of West Nile virus infection. Viruses. 2014;6(2):606–623.
  • Iwamoto M, Jernigan DB, Guasch A, et al. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003;12(22):2196–2203.
  • Paisley JE, Hinckley AF, O’Leary DR, et al. West Nile virus infection among pregnant women in a northern Colorado community, 2003 to 2004. Pediatrics. 2006;117(3):814–820.
  • Pealer LN, Marfin AA, Petersen LR, et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med. 2003;349(13):1236–1245.
  • Cordoba L, Escribano-Romero E, Garmendia A, et al. Pregnancy increases the risk of mortality in West Nile virus-infected mice. J Gen Virol. 2007;88(2):476–480.
  • Jeffrey Root J. West Nile virus associations in wild mammals: a synthesis. Arch Virol. 2013;158(4):735–752.
  • Bakonyi T, Ivanics E, Erdelyi K, et al. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis. 2006;12(4):618–623.
  • Melnick JL, Paul JR, Riordan JT, et al. Isolation from human sera in Egypt of a virus apparently identical to West Nile virus. Proc Soc Exp Biol Med. 1951;77(4):661–665.
  • Goldblum N, Sterk VV, Paderski B. West Nile fever; the clinical features of the disease and the isolation of West Nile virus from the blood of nine human cases. Am J Hyg. 1954;59(1):89–103.
  • Benjelloun A, El Harrak M, Belkadi B. West Nile Disease Epidemiology in North-West Africa: bibliographical review. Transbound Emerg Dis. 2016;63(6):e153–e159.
  • Ergunay K, Gunay F, Erisoz Kasap O, et al. Serological, molecular and entomological surveillance demonstrates widespread circulation of West Nile virus in Turkey. PLoS Negl Trop Dis. 2014;8(7):e3028.
  • Jourdain F, Samy AM, Hamidi A, et al. Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl Trop Dis. 2019;13(6):e0007314.
  • Lanciotti RS, Roehrig JT, Deubel V, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286(5448):2333–2337.
  • Murray KO, Mertens E, Despres P. West Nile virus and its emergence in the United States of America. Vet Res. 2010;41(6):67.
  • Murray KO, Walker C, Gould E. The virology, epidemiology, and clinical impact of West Nile virus: a decade of advancements in research since its introduction into the Western Hemisphere. Epidemiol Infect. 2011;139(6):807–817.
  • Komar N, Clark GG. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica. 2006;19(2):112–117.
  • Kramer LD, Ciota AT, Kilpatrick AM. Introduction, Spread, and Establishment of West Nile virus in the Americas. J Med Entomol. 2019;56(6):1448–1455.
  • Elizondo-Quiroga D, Elizondo-Quiroga A. West nile virus and its theories, a big puzzle in Mexico and latin america. J Glob Infect Dis. 2013;5(4):168–175.
  • Beasley DW, Davis CT, Estrada-Franco J, et al. Genome sequence and attenuating mutations in West Nile virus isolate from Mexico. Emerg Infect Dis. 2004;10(12):2221–2224.
  • Smithburn KC, Hughes TP, Burke AW, et al. A neurotropic virus isolated from the blood of a native of Uganda 1. Am J Trop Med Hyg. 1940;s1-20(4):471–492.
  • Sule WF, Oluwayelu DO, Hernandez-Triana LM, et al. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasit Vectors. 2018;11(1):414.
  • Jupp PG. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann N Y Acad Sci. 2001;951(1):143–152.
  • Atkinson B, Hewson R. Emerging arboviruses of clinical importance in Central Asia. J Gen Virol. 2018;99(9):1172–1184.
  • Platonov AE, Shipulin GA, Shipulina OY, et al. Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999. Emerg Infect Dis. 2001;7(1):128–132.
  • David S, Abraham AM. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen. Infect Dis (Lond). 2016;48(8):571–586.
  • Anukumar B, Sapkal GN, Tandale BV, et al. West Nile encephalitis outbreak in Kerala, India, 2011. J Clin Virol. 2014;61(1):152–155.
  • Tandel K, Sharma S, Dash PK, et al. Emergence of human West Nile virus infection among pediatric population in Madhya Pradesh, India. J Med Virol. 2019;91(3):493–497.
  • Mackenzie JS, Williams DT. The zoonotic flaviviruses of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent viruses. Zoonoses Public Health. 2009;56(6–7):338–356.
  • Lan DL, Wang CS, Deng B, et al. Serological investigations on West Nile virus in birds and horses in Shanghai, China. Epidemiol Infect. 2013;141(3):596–600.
  • Lu Z, Fu SH, Cao L, et al. Human infection with West Nile virus, Xinjiang, China, 2011. Emerg Infect Dis. 2014;20(8):1421–1423.
  • Russell RC, Dwyer DE. Arboviruses associated with human disease in Australia. Microbes Infect. 2000;2(14):1693–1704.
  • Frost MJ, Zhang J, Edmonds JH, et al. Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerg Infect Dis. 2012;18(5):792–800.
  • Read AJ, Finlaison DS, Gu X, et al. Clinical and epidemiological features of West Nile virus equine encephalitis in New South Wales, Australia, 2011. Aust Vet J. 2019;97(5):133–143.
  • Schneider BS, Soong L, Coffey LL, et al. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PLoS One. 2010;5(7):e11704.
  • Diamond MS, Gale M Jr. Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol. 2012;33(10):522–530.
  • Bai F, Kong KF, Dai J, et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis. 2010;202(12):1804–1812.
  • Demeure CE, Brahimi K, Hacini F, et al. Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol. 2005;174(7):3932–3940.
  • Ribeiro JM, Charlab R, Valenzuela JG. The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti. J Exp Biol. 2001;204(Pt 11):2001–2010.
  • Schneider BS, McGee CE, Jordan JM, et al. Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection. PLoS One. 2007;2:e1171.
  • Pingen M, Schmid MA, Harris E, et al. Mosquito biting modulates skin response to virus infection. Trends Parasitol. 2017;33(8):645–657.
  • Garcia M, Alout H, Diop F, et al. Innate immune response of primary human keratinocytes to West Nile virus infection and its modulation by mosquito saliva. Front Cell Infect Microbiol. 2018;8:387.
  • Hoover LI, Fredericksen BL. IFN-dependent and -independent reduction in West Nile virus infectivity in human dermal fibroblasts. Viruses. 2014;6(3):1424–1441.
  • Perera-Lecoin M, Meertens L, Carnec X, et al. Flavivirus entry receptors: an update. Viruses. 2013;6(1):69–88.
  • Mercer J. Viral apoptotic mimicry party: p.S. Bring your own Gas6. Cell Host Microbe. 2011;9(4):255–257.
  • Fruscoloni P, Zamboni M, Baldi MI, et al. Exonucleolytic degradation of double-stranded RNA by an activity in Xenopus laevis germinal vesicles. Proc Natl Acad Sci U S A. 2003;100(4):1639–1644.
  • Meertens L, Carnec X, Lecoin MP, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–557.
  • Miner JJ, Daniels BP, Shrestha B, et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat Med. 2015;21(12):1464–1472.
  • Schmid ET, Pang IK, Carrera Silva EA, et al. AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity. Elife. 2016;5. DOI:10.7554/eLife.12414.
  • Qian F, Wang X, Zhang L, et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis. 2011;203(10):1415–1424.
  • Best SM. Viruses PLAY DEAD to TAMe interferon responses. Cell Host Microbe. 2013;14(2):117–118.
  • Bhattacharyya S, Zagorska A, Lew ED, et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe. 2013;14(2):136–147.
  • Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005;79(21):13350–13361.
  • Shrestha B, Wang T, Samuel MA, et al. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol. 2006;80(11):5338–5348.
  • Suthar MS, Ma DY, Thomas S, et al. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 2010;6(2):e1000757.
  • Szretter KJ, Daffis S, Patel J, et al. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol. 2010;84(23):12125–12138.
  • Daffis S, Samuel MA, Suthar MS, et al. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol. 2008;82(17):8465–8475.
  • Errett JS, Suthar MS, McMillan A, et al. The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol. 2013;87(21):11416–11425.
  • Wang T, Town T, Alexopoulou L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10(12):1366–1373.
  • Daffis S, Samuel MA, Suthar MS, et al. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008;82(21):10349–10358.
  • Gack MU, Diamond MS. Innate immune escape by dengue and West Nile viruses. Curr Opin Virol. 2016;20:119–128.
  • Arjona A, Ledizet M, Anthony K, et al. West Nile virus envelope protein inhibits dsRNA-induced innate immune responses. J Immunol. 2007;179(12):8403–8409.
  • Liu WJ, Wang XJ, Mokhonov VV, et al. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol. 2005;79(3):1934–1942.
  • Zhang HL, Ye HQ, Liu SQ, et al. West Nile Virus NS1 antagonizes interferon beta production by targeting RIG-I and MDA5. J Virol. 2017;91(18). DOI:10.1128/JVI.02396-16.
  • Hershkovitz O, Rosental B, Rosenberg LA, et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol. 2009;183(4):2610–2621.
  • Zhang M, Daniel S, Huang Y, et al. Anti-West Nile virus activity of in vitro expanded human primary natural killer cells. BMC Immunol. 2010;11(1):3.
  • Yao Y, Strauss-Albee DM, Zhou JQ, et al. The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection. PLoS One. 2017;12(2):e0172625.
  • Shrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol. 2006;80(1):119–129.
  • Wang T, Scully E, Yin Z, et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J Immunol. 2003;171(5):2524–2531.
  • Welte T, Lamb J, Anderson JF, et al. Role of two distinct gammadelta T cell subsets during West Nile virus infection. FEMS Immunol Med Microbiol. 2008;53(2):275–283.
  • Fang H, Welte T, Zheng X, et al. Gammadelta T cells promote the maturation of dendritic cells during West Nile virus infection. FEMS Immunol Med Microbiol. 2010;59(1):71–80.
  • Wang T, Gao Y, Scully E, et al. Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. J Immunol. 2006;177(3):1825–1832.
  • Mak TW, Saunders ME, Jett BD. NK, γδ T and NKT Cells. In: Mak TW, Saunders ME, JetBD, editors. Primer to the immune response (Second Edition). 2014. p. 247–268
  • Kovats S, Turner S, Simmons A, et al. West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol. 2016;186(2):214–226.
  • Rios M, Zhang MJ, Grinev A, et al. Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion. Transfusion. 2006;46(4):659–667.
  • Lim JK, Obara CJ, Rivollier A, et al. Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol. 2011;186(1):471–478.
  • Getts DR, Terry RL, Getts MT, et al. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205(10):2319–2337.
  • Peiris JS, Porterfield JS. Antibody-mediated enhancement of Flavivirus replication in macrophage-like cell lines. Nature. 1979;282(5738):509–511.
  • Martin-Acebes MA, Saiz JC, Jimenez De Oya N. Antibody-dependent enhancement and Zika: real threat or Phantom Menace? Front Cell Infect Microbiol. 2018;8:44.
  • Kong KF, Wang X, Anderson JF, et al. West nile virus attenuates activation of primary human macrophages. Viral Immunol. 2008;21(1):78–82.
  • Ben-Nathan D, Huitinga I, Lustig S, et al. West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch Virol. 1996;141(3–4):459–469.
  • Bryan MA, Giordano D, Draves KE, et al. Splenic macrophages are required for protective innate immunity against West Nile virus. PLoS One. 2018;13(2):e0191690.
  • Kong KF, Delroux K, Wang X, et al. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol. 2008;82(15):7613–7623.
  • Bai F, Thompson EA, Vig PJS, et al. Current understanding of West Nile virus clinical manifestations, immune responses, neuroinvasion, and immunotherapeutic implications. Pathogens. 2019;8(4):193.
  • Silva MC, Guerrero-Plata A, Gilfoy FD, et al. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J Virol. 2007;81(24):13640–13648.
  • Zimmerman MG, Bowen JR, McDonald CE, et al. West Nile virus infection blocks inflammatory response and T cell costimulatory capacity of human monocyte-derived dendritic cells. J Virol. 2019;93(23). DOI:10.1128/JVI.00664-19.
  • Pinto AK, Ramos HJ, Wu X, et al. Deficient IFN signaling by myeloid cells leads to MAVS-dependent virus-induced sepsis. PLoS Pathog. 2014;10(4):e1004086.
  • Diamond MS, Shrestha B, Marri A, et al. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol. 2003;77(4):2578–2586.
  • Mehlhop E, Whitby K, Oliphant T, et al. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol. 2005;79(12):7466–7477.
  • Wang Y, Lobigs M, Lee E, et al. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol. 2003;77(24):13323–13334.
  • Wang Y, Lobigs M, Lee E, et al. CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon. J Gen Virol. 2006;87(12):3599–3609.
  • Sitati EM, Diamond MS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol. 2006;80(24):12060–12069.
  • Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol. 2008;181(12):8568–8575.
  • Shrestha B, Diamond MS. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol. 2007;81(21):11749–11757.
  • Acharya D, Wang P, Paul AM, et al. Interleukin-17A Promotes CD8+ T cell cytotoxicity to facilitate West Nile virus clearance. J Virol. 2017;91(1). DOI:10.1128/JVI.01529-16.
  • Shrestha B, Pinto AK, Green S, et al. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J Virol. 2012;86(17):8937–8948.
  • Sitati E, McCandless EE, Klein RS, et al. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. J Virol. 2007;81(18):9801–9811.
  • Klein RS, Lin E, Zhang B, et al. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. 2005;79(17):11457–11466.
  • Glass WG, Lim JK, Cholera R, et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med. 2005;202(8):1087–1098.
  • Bardina SV, Brown JA, Michlmayr D, et al. Chemokine receptor Ccr7 restricts fatal West Nile virus encephalitis. J Virol. 2017;91(10). DOI:10.1128/JVI.02409-16.
  • Wang S, Welte T, McGargill M, et al. Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. J Immunol. 2008;181(3):2084–2091.
  • Richner JM, Gmyrek GB, Govero J, et al. Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of West Nile virus infection. PLoS Pathog. 2015;11(7):e1005027.
  • Brien JD, Uhrlaub JL, Hirsch A, et al. Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med. 2009;206(12):2735–2745.
  • James EA, Gates TJ, LaFond RE, et al. Neuroinvasive West Nile infection elicits elevated and atypically Polarized T cell responses that promote a pathogenic outcome. PLoS Pathog. 2016;12(1):e1005375.
  • Lanteri MC, O’Brien KM, Purtha WE, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest. 2009;119(11):3266–3277.
  • Sejvar JJ. West Nile virus infection. Microbiol Spectr. 2016;4(3). DOI:10.1128/microbiolspec.EI10-0021-2016
  • Campbell GL, Marfin AA, Lanciotti RS, et al. West Nile virus. Lancet Infect Dis. 2002;2(9):519–529.
  • Byas AD, Ebel GD. Comparative pathology of West Nile virus in humans and non-human animals. Pathogens. 2020;9(1):48.
  • Yeung MW, Shing E, Nelder M, et al. Epidemiologic and clinical parameters of West Nile virus infections in humans: a scoping review. BMC Infect Dis. 2017;17(1):609.
  • Hayes EB, Sejvar JJ, Zaki SR, et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1174–1179.
  • Murray KO, Nolan MS, Ronca SE, et al. The neurocognitive and MRI outcomes of West Nile virus infection: preliminary analysis using an external control group. Front Neurol. 2018;9:111.
  • Bakri SJ, Kaiser PK. Ocular manifestations of West Nile virus. Curr Opin Ophthalmol. 2004;15(6):537–540.
  • Bains HS, Jampol LM, Caughron MC, et al. Vitritis and chorioretinitis in a patient with West Nile virus infection. Arch Ophthalmol. 2003;121:205–207.
  • Armah HB, Wang G, Omalu BI, et al. Systemic distribution of West Nile virus infection: postmortem immunohistochemical study of six cases. Brain Pathol. 2007;17(4):354–362.
  • Paddock CD, Nicholson WL, Bhatnagar J, et al. Fatal hemorrhagic fever caused by West Nile virus in the United States. Clin Infect Dis. 2006;42(11):1527–1535.
  • Angenvoort J, Brault AC, Bowen RA, et al. West Nile viral infection of equids. Vet Microbiol. 2013;167:168–180.
  • Gamino V, Hofle U. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res. 2013;44(1):39.
  • Jimenez De Oya N, Escribano-Romero E, Blazquez AB, et al. Current progress of avian vaccines against West Nile virus. Vaccines (Basel). 2019;7(4). DOI:10.3390/vaccines7040126.
  • Jimenez De Oya N, Camacho MC, Blazquez AB, et al. High susceptibility of magpie (Pica pica) to experimental infection with lineage 1 and 2 West Nile virus. PLoS Negl Trop Dis. 2018;12(4):e0006394.
  • Gamino V, Escribano-Romero E, Gutierrez-Guzman AV, et al. Oculopathologic findings in flavivirus-infected gallinaceous birds. Vet Pathol. 2014;51(6):1113–1116.
  • Garcia MN, Hasbun R, Murray KO. Persistence of West Nile virus. Microbes Infect. 2015;17(2):163–168.
  • Murray K, Walker C, Herrington E, et al. Persistent infection with West Nile virus years after initial infection. J Infect Dis. 2010;201(1):2–4.
  • Penn RG, Guarner J, Sejvar JJ, et al. Persistent neuroinvasive West Nile virus infection in an immunocompromised patient. Clin Infect Dis. 2006;42(5):680–683.
  • Roehrig JT, Nash D, Maldin B, et al. Persistence of virus-reactive serum immunoglobulin m antibody in confirmed west nile virus encephalitis cases. Emerg Infect Dis. 2003;9(3):376–379.
  • Diniz JA, Da Rosa AP, Guzman H, et al. West Nile virus infection of primary mouse neuronal and neuroglial cells: the role of astrocytes in chronic infection. Am J Trop Med Hyg. 2006;75(4):691–696.
  • Potokar M, Jorgacevski J, Zorec R. Astrocytes in flavivirus infections. Int J Mol Sci. 2019;20(3):691.
  • Pogodina VV, Frolova MP, Malenko GV, et al. Study on West Nile virus persistence in monkeys. Arch Virol. 1983;75(1–2):71–86.
  • Xiao SY, Guzman H, Zhang H, et al. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis. 2001;7(4):714–721.
  • Appler KK, Brown AN, Stewart BS, et al. Persistence of West Nile virus in the central nervous system and periphery of mice. PLoS One. 2010;5(5):e10649.
  • Saxena V, Xie G, Li B, et al. A hamster-derived West Nile virus isolate induces persistent renal infection in mice. PLoS Negl Trop Dis. 2013;7(6):e2275.
  • Wheeler SS, Langevin SA, Brault AC, et al. Detection of persistent west nile virus RNA in experimentally and naturally infected avian hosts. Am J Trop Med Hyg. 2012;87(3):559–564.
  • Samuel MA, Diamond MS. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol. 2006;80(19):9349–9360.
  • Shrestha B, Gottlieb D, Diamond MS. Infection and injury of neurons by West Nile encephalitis virus. J Virol. 2003;77(24):13203–13213.
  • Peng BH, Wang T. West Nile virus induced cell death in the central nervous system. Pathogens. 2019;8(4):215.
  • Clarke P, Leser JS, Quick ED, et al. Death receptor-mediated apoptotic signaling is activated in the brain following infection with West Nile virus in the absence of a peripheral immune response. J Virol. 2014;88(2):1080–1089.
  • Lesteberg KE, Beckham JD. Immunology of West Nile virus infection and the role of Alpha-Synuclein as a viral restriction factor. Viral Immunol. 2019;32(1):38–47.
  • Beatman E, Oyer R, Shives KD, et al. West Nile virus growth is independent of autophagy activation. Virology. 2012;433(1):262–272.
  • Vandergaast R, Fredericksen BL. West Nile virus (WNV) replication is independent of autophagy in mammalian cells. PLoS One. 2012;7(9):e45800.
  • Martin-Acebes MA, Blazquez AB, Saiz JC. Reconciling West Nile virus with the autophagic pathway. Autophagy. 2015;11(5):861–864.
  • Shi PY, Wong SJ. Serologic diagnosis of West Nile virus infection. Expert Rev Mol Diagn. 2003;3(6):733–741.
  • Dauphin G, Zientara S. West Nile virus: recent trends in diagnosis and vaccine development. Vaccine. 2007;25(30):5563–5576.
  • Shi PY, Kauffman EB, Ren P, et al. High-throughput detection of West Nile virus RNA. J Clin Microbiol. 2001;39(4):1264–1271.
  • Wilson MR, Zimmermann LL, Crawford ED, et al. Acute West Nile virus meningoencephalitis diagnosed via metagenomic deep sequencing of cerebrospinal fluid in a renal transplant patient. Am J Transplant. 2017;17(3):803–808.
  • Sinigaglia A, Peta E, Riccetti S, et al. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov. 2020;15(3):333–348.
  • Krishnan MN, Garcia-Blanco MA. Targeting host factors to treat West Nile and dengue viral infections. Viruses. 2014;6(2):683–708.
  • De Wispelaere M, Lian W, Potisopon S, et al. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem Biol. 2018;25(8):1006–1016 e1008.
  • Haviernik J, Stefanik M, Fojtikova M, et al. Arbidol (Umifenovir): a broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses. 2018;10(4):184.
  • Vazquez-Calvo A, Jimenez De Oya N, Martin-Acebes MA, et al. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and Dengue virus. Front Microbiol. 2017;8:1314.
  • Pliego Zamora A, Edmonds JH, Reynolds MJ, et al. The in vitro and in vivo antiviral properties of combined monoterpene alcohols against West Nile virus infection. Virology. 2016;495:18–32.
  • Prochnow H, Rox K, Birudukota NVS, et al. Labyrinthopeptins exert broad-spectrum antiviral activity through lipid-binding-mediated virolysis. J Virol. 2020;94(2). DOI:10.1128/JVI.01471-19.
  • Nitsche C. Strategies towards protease inhibitors for emerging flaviviruses. Adv Exp Med Biol. 2018;1062:175–186.
  • Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012;67(8):1884–1894.
  • Yang SNY, Atkinson SC, Wang C, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antiviral Res. 2020;177:104760.
  • Bullard KM, Gullberg RC, Soltani E, et al. Murine efficacy and Pharmacokinetic evaluation of the Flaviviral NS5 capping Enzyme 2-Thioxothiazolidin-4-one inhibitor BG-323. PLoS One. 2015;10(6):e0130083.
  • Anderson JF, Rahal JJ. Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg Infect Dis. 2002;8(1):107–108.
  • Tunkel AR, Glaser CA, Bloch KC, et al. The management of encephalitis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2008;47(3):303–327.
  • Eyer L, Fojtikova M, Nencka R, et al. Viral RNA-dependent RNA polymerase inhibitor 7-Deaza-2′-C-Methyladenosine prevents death in a mouse model of West Nile virus infection. Antimicrob Agents Chemother. 2019;63(3). DOI:10.1128/AAC.02093-18.
  • Nelson J, Roe K, Orillo B, et al. Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection. Antiviral Res. 2015;122:39–45.
  • Eyer L, Nencka R, De Clercq E, et al. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother. 2018;26:2040206618761299.
  • Eyer L, Zouharova D, Sirmarova J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Res. 2017;142:63–67.
  • Morrey JD, Taro BS, Siddharthan V, et al. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents. Antiviral Res. 2008;80(3):377–379.
  • Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449–463.
  • Escribano-Romero E, Jimenez De Oya N, Domingo E, et al. Extinction of West Nile virus by Favipiravir through lethal mutagenesis. Antimicrob Agents Chemother. 2017;61(11). DOI:10.1128/AAC.01400-17.
  • Dragoni F, Boccuto A, Picarazzi F, et al. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro. Antiviral Res. 2020;175:104708.
  • Deas TS, Binduga-Gajewska I, Tilgner M, et al. Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol. 2005;79(8):4599–4609.
  • Diamond MS. Progress on the development of therapeutics against West Nile virus. Antiviral Res. 2009;83(3):214–227.
  • Puschnik AS, Marceau CD, Ooi YS, et al. A small-molecule Oligosaccharyltransferase inhibitor with pan-flaviviral activity. Cell Rep. 2017;21(11):3032–3039.
  • Ivanova T, Hardes K, Kallis S, et al. Optimization of Substrate-Analogue Furin Inhibitors. ChemMedChem. 2017;12(23):1953–1968.
  • Brai A, Fazi R, Tintori C, et al. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc Natl Acad Sci U S A. 2016;113(19):5388–5393.
  • Blazquez AB, Vazquez-Calvo A, Martin-Acebes MA, et al. Pharmacological inhibition of protein Kinase C reduces West Nile virus replication. Viruses. 2018;10(2): 91.
  • Jimenez De Oya N, Blazquez AB, Casas J, et al. Direct activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 inhibits Flavivirus infection through modification of host cell lipid metabolism. Antimicrob Agents Chemother. 2018;62(7). DOI:10.1128/AAC.00360-18.
  • Martin-Acebes MA, Vazquez-Calvo A, Saiz JC. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Prog Lipid Res. 2016;64:123–137.
  • Jimenez De Oya N, Esler WP, Huard K, et al. Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect. 2019;8(1):624–636.
  • Blazquez AB, Martin-Acebes MA, Saiz JC. Inhibition of West Nile virus multiplication in cell culture by anti-parkinsonian drugs. Front Microbiol. 2016;7:296.
  • Vazquez-Calvo A, Saiz JC, Sobrino F, et al. Inhibition of enveloped virus infection of cultured cells by valproic acid. J Virol. 2011;85(3):1267–1274.
  • Morrey JD, Day CW, Julander JG, et al. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem Chemother. 2004;15(2):101–109.
  • Rodriguez-Pulido M, Martin-Acebes MA, Escribano-Romero E, et al. Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One. 2012;7(11):e49494.
  • Quirk M. First treatment trial for West Nile infection begins. Lancet Infect Dis. 2002;2(10):589.
  • Daffis S, Suthar MS, Gale M Jr., et al. Measure and countermeasure: type I IFN (IFN-α/β) antiviral response against West Nile virus. J Innate Immun. 2009;1(5):435–445.
  • Chan-Tack KM, Forrest G. Failure of interferon alpha-2b in a patient with West Nile virus meningoencephalitis and acute flaccid paralysis. Scand J Infect Dis. 2005;37(11–12):944–946.
  • Ben-Nathan D, Lustig S, Tam G, et al. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J Infect Dis. 2003;188(1):5–12.
  • Morrey JD, Siddharthan V, Olsen AL, et al. Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis. 2006;194(9):1300–1308.
  • Shimoni Z, Bin H, Bulvik S, et al. The clinical response of West Nile virus neuroinvasive disease to intravenous immunoglobulin therapy. Clin Pract. 2012;2(1):e18.
  • Hart J Jr., Tillman G, Kraut MA, et al. West Nile virus neuroinvasive disease: neurological manifestations and prospective longitudinal outcomes. BMC Infect Dis. 2014;14(1):248.
  • Nybakken GE, Oliphant T, Johnson S, et al. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature. 2005;437(7059):764–769.
  • Oliphant T, Engle M, Nybakken GE, et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med. 2005;11(5):522–530.
  • Beigel JH, Nordstrom JL, Pillemer SR, et al. Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus. Antimicrob Agents Chemother. 2010;54(6):2431–2436.
  • Kaiser JA, Barrett ADT. Twenty years of progress toward West Nile virus vaccine development. Viruses. 2019;11(9):823.
  • Gould LH, Fikrig E. West Nile virus: a growing concern? J Clin Invest. 2004;113(8):1102–1107.
  • Petersen LR, Roehrig JT. Flavivirus DNA vaccines–good science, uncertain future. J Infect Dis. 2007;196(12):1721–1723.
  • Gardner IA, Wong SJ, Ferraro GL, et al. Incidence and effects of West Nile virus infection in vaccinated and unvaccinated horses in California. Vet Res. 2007;38(1):109–116.
  • Chaintoutis SC, Diakakis N, Papanastassopoulou M, et al. Evaluation of cross-protection of a Lineage 1 West Nile virus inactivated vaccine against natural infections from a virulent Lineage 2 strain in horses, under field conditions. Clin Vaccine Immunol. 2015;22(9):1040–1049.
  • Minke JM, Siger L, Cupillard L, et al. Protection provided by a recombinant ALVAC((R))-WNV vaccine expressing the prM/E genes of a lineage 1 strain of WNV against a virulent challenge with a lineage 2 strain. Vaccine. 2011;29(28):4608–4612.
  • Venter M, Van Vuren PJ, Mentoor J, et al. Inactivated West Nile Virus (WNV) vaccine, Duvaxyn WNV, protects against a highly neuroinvasive lineage 2 WNV strain in mice. Vaccine. 2013;31(37):3856–3862.
  • Merino-Ramos T, Blazquez AB, Escribano-Romero E, et al. Protection of a single dose west nile virus recombinant subviral particle vaccine against lineage 1 or 2 strains and analysis of the cross-reactivity with Usutu virus. PLoS One. 2014;9(9):e108056.
  • Bardina SV, Bunduc P, Tripathi S, et al. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017;356(6334):175–180.
  • Pierson TC, Xu Q, Nelson S, et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe. 2007;1(2):135–145.
  • Lobigs M, Diamond MS. Feasibility of cross-protective vaccination against flaviviruses of the Japanese encephalitis serocomplex. Expert Rev Vaccines. 2012;11(2):177–187.
  • Vazquez-Calvo A, Blazquez AB, Escribano-Romero E, et al. Zika virus infection confers protection against West Nile virus challenge in mice. Emerg Microbes Infect. 2017;6(9):e81.
  • Suthar MS, Diamond MS, Gale M Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 2013;11(2):115–128.
  • Olberg RA, Barker IK, Crawshaw GJ, et al. West Nile virus encephalitis in a Barbary Macaque (Macaca sylvanus). Emerg Infect Dis. 2004;10(4):712–714.
  • Blackburn NK, Reyers F, Berry WL, et al. Susceptibility of dogs to West Nile virus: a survey and pathogenicity trial. J Comp Pathol. 1989;100(1):59–66.
  • Lichtensteiger CA, Heinz-Taheny K, Osborne TS, et al. West Nile virus encephalitis and myocarditis in wolf and dog. Emerg Infect Dis. 2003;9(10):1303–1306.
  • Habarugira G, Moran J, Colmant AMG, et al. Mosquito-independent transmission of West Nile virus in farmed saltwater crocodiles (Crocodylus porosus). Viruses. 2020;12(2):198.
  • Del Piero F, Stremme DW, Habecker PL, et al. West Nile Flavivirus Polioencephalomyelitis in a harbor seal (Phoca vitulina). Vet Pathol. 2006;43(1):58–61.
  • Palmer MV, Stoffregen WC, Rogers DG, et al. West Nile virus infection in reindeer (Rangifer Tarandus). J Vet Diagn Invest. 2004;16(3):219–222.
  • Rimoldi G, Mete A, Adaska JM, et al. West Nile virus infection in sheep. Vet Pathol. 2017;54(1):155–158.
  • Heinz-Taheny KM, Andrews JJ, Kinsel MJ, et al. West Nile virus infection in free-ranging squirrels in illinois. J Vet Diagn Invest. 2004;16(3):186–190.
  • Venter M, Human S, Zaayman D, et al. Lineage 2 west nile virus as cause of fatal neurologic disease in horses, South Africa. Emerg Infect Dis. 2009;15(6):877–884.
  • Gomez A, Kramer LD, Dupuis AP 2nd, et al. Experimental infection of eastern gray squirrels (Sciurus carolinensis) with West Nile virus. Am J Trop Med Hyg. 2008;79(3):447–451.
  • Kiupel M, Simmons HA, Fitzgerald SD, et al. West Nile virus infection in eastern fox squirrels (Sciurus niger). Vet Pathol. 2003;40(6):703–707.
  • Porter RS, Leblond A, Lecollinet S, et al. Clinical diagnosis of West Nile Fever in Equids by classification and regression tree (CART) analysis and comparative study of clinical appearance in three European countries. Transbound Emerg Dis. 2011;58(3):197–205.
  • Kutzler MA, Bildfell RJ, Gardner-Graff KK, et al. West Nile virus infection in two alpacas. J Am Vet Med Assoc. 2004;225(921–924):880.
  • Dutton CJ, Quinnell M, Lindsay R, et al. Paraparesis in a polar bear (Ursus maritimus) associated with West Nile virus infection. J Zoo Wildl Med. 2009;40(3):568–571.
  • Cantile C, Di Guardo G, Eleni C, et al. Clinical and neuropathological features of West Nile virus equine encephalomyelitis in Italy. Equine Vet J. 2000;32(1):31–35.
  • Miller DL, Radi ZA, Baldwin C, et al. Fatal West Nile virus infection in a white-tailed deer (Odocoileus virginianus). J Wildl Dis. 2005;41(1):246–249.
  • Yaeger M, Yoon KJ, Schwartz K, et al. West Nile virus meningoencephalitis in a Suri alpaca and Suffolk ewe. J Vet Diagn Invest. 2004;16(1):64–66.
  • Cantile C, Del Piero F, Di Guardo G, et al. Pathologic and immunohistochemical findings in naturally occuring West Nile virus infection in horses. Vet Pathol. 2001;38(4):414–421.
  • Monath TP, Liu J, Kanesa-Thasan N, et al. A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci U S A. 2006;103(17):6694–6699.
  • Biedenbender R, Bevilacqua J, Gregg AM, et al. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J Infect Dis. 2011;203(1):75–84.
  • Dayan GH, Bevilacqua J, Coleman D, et al. Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥50 years of age. Vaccine. 2012;30(47):6656–6664.
  • Durbin AP, Wright PF, Cox A, et al. The live attenuated chimeric vaccine rWN/DEN4Delta30 is well-tolerated and immunogenic in healthy flavivirus-naive adult volunteers. Vaccine. 2013;31(48):5772–5777.
  • Pierce KK, Whitehead SS, Kirkpatrick BD, et al. A live attenuated chimeric West Nile virus vaccine, rWN/DEN4Delta30, is well tolerated and immunogenic in Flavivirus-Naive older adult volunteers. J Infect Dis. 2017;215(1):52–55.
  • Martin JE, Pierson TC, Hubka S, et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis. 2007;196(12):1732–1740.
  • Ledgerwood JE, Pierson TC, Hubka SA, et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis. 2011;203(10):1396–1404.
  • Coller B, Pai V, Weeks-Levy C, et al. Recombinant subunit west nile virus vaccine for protection of human subjects. USA: Hawaii Biotech Inc; 2012.
  • Barrett PN, Terpening SJ, Snow D, et al. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines. 2017;16(9):883–894.
  • Woods CW, Sanchez AM, Swamy GK, et al. An observer blinded, randomized, placebo-controlled, phase I dose escalation trial to evaluate the safety and immunogenicity of an inactivated West Nile virus vaccine, HydroVax-001, in healthy adults. Vaccine. 2019;37(30):4222–4230.