2,160
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The enzyme activity of sortase A is regulated by phosphorylation in Staphylococcus aureus

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2171641 | Received 29 Sep 2022, Accepted 17 Nov 2022, Published online: 10 Feb 2023

References

  • Fisher JF, Mobashery S. Beta-lactams against the fortress of the gram-positive staphylococcus aureus bacterium. Chem Rev. 2021;121(6):3412–16.
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 2010;9(2):117–128.
  • Cegelski L, Marshall GR, Eldridge GR, et al. The biology and future prospects of antivirulence therapies. Nature rev Microbiol. 2008;6(1):17–27.
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3(9):541–548.
  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of staphylococcus aureus. Virulence. 2021;12(1):547–569.
  • Liu CI, Liu GY, Song Y, et al. A cholesterol biosynthesis inhibitor blocks staphylococcus aureus virulence. Science. 2008;319(5868):1391–1394. DOI:10.1126/science.1153018
  • Chen F, Di H, Wang Y, et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat Chem Biol. 2016;12(3):174–179. DOI:10.1038/nchembio.2003
  • Balaban N, Goldkorn T, Nhan Rt et al. Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science. 1998;280(5362):438–440. DOI:10.1126/science.280.5362.438
  • Lyon GJ, Mayville P, Muir TW, et al. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci. 2000; 97(24):13330–13335.
  • Sully EK, Malachowa N, Elmore BO, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLOS Pathogens. 2014;10(6):e1004174. DOI:10.1371/journal.ppat.1004174
  • Mazmanian SK, Liu G, Ton-That H, et al. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 1999;285(5428):760–763.
  • Zhang J, Liu H, Zhu K, et al. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci. 2014; 111(37):13517–13522.
  • Cossart P, Jonquieres R. Sortase, a universal target for therapeutic agents against gram-positive bacteria?. Proc Natl Acad Sci. 2000; 97(10):5013–5015.
  • Maresso AW, Schneewind O. Sortase as a target of anti-infective therapy. Pharmacol Rev. 2008;60(1):128–141.
  • Cascioferro S, Totsika M, Schillaci D. Sortase A: an ideal target for anti-virulence drug development. Microbial Pathogenesis. 2014;77:105–112.
  • Alharthi S, Alavi SE, Moyle PM, et al. Sortase a (SrtA) inhibitors as an alternative treatment for superbug infections. Drug Discov Today. 2021;26(9):2164–2172.
  • Sapra R, Rajora AK, Kumar P, et al. Chemical biology of sortase a inhibition: a gateway to anti-infective therapeutic agents. J Med Chem. 2021;64(18):13097–13130. DOI:10.1021/acs.jmedchem.1c00386
  • Cascioferro S, Raffa D, Maggio B, et al. Sortase a inhibitors: Recent advances and future perspectives. J Med Chem. 2015;58(23):9108–9123. DOI:10.1021/acs.jmedchem.5b00779
  • Spirig T, Weiner EM, Clubb RT. Sortase enzymes in gram-positive bacteria. Mol Microbiol. 2011;82(5):1044–1059.
  • Bradshaw WJ, Davies AH, Chambers CJ, et al. Molecular features of the sortase enzyme family. FEBS J. 2015;282(11):2097–2114. DOI:10.1111/febs.13288
  • Mazmanian SK, Liu G, Jensen ER, et al. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci. 2000;97(10):5510–5515.
  • Wang L, Jing S, Qu H, et al. Orientin mediates protection against MRSA-induced pneumonia by inhibiting sortase a. Virulence. 2021;12(1):2149–2161. DOI:10.1080/21505594.2021.1962138
  • Su X, Yu H, Wang X, et al. Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting sortase a. Virulence. 2022;13(1):1434–1445. DOI:10.1080/21505594.2022.2112831
  • Guan XN, Zhang T, Yang T, et al. Covalent sortase a inhibitor ML346 prevents Staphylococcus aureus infection of galleria mellonella. RSC Med Chem. 2022;13(2):138–149. DOI:10.1039/D1MD00316J
  • Popp MW, Antos JM, Grotenbreg GM, et al. Sortagging: a versatile method for protein labeling. Nat Chem Biol. 2007;3(11):707–708.
  • Dorr BM, Ham HO, An C, et al. Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci. 2014;111(37):13343–13348.
  • Ham HO, Qu Z, Haller CA, et al. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase a. Nat Commun. 2016;7(1):11140. DOI:10.1038/ncomms11140
  • Wagner K, Kwakkenbos Mj, Claassen Yb, et al. Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc Natl Acad Sci. 2014;111(47):16820–16825.
  • Swee LK, Guimaraes Cp, Sehrawat S, et al. Sortase-mediated modification of alphaDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci. 2013;110(4):1428–1433.
  • Ge Y, Chen L, Liu S, et al. Enzyme-mediated intercellular proximity labeling for detecting cell–cell interactions. J Am Chem Soc. 2019;141(5):1833–1837. DOI:10.1021/jacs.8b10286
  • Yamaguchi S, Ikeda R, Umeda Y, et al. Chemoenzymatic labeling to visualize intercellular contacts using lipidated sortaseA. Chembiochem. 2022;23(21):e202200474. DOI:10.1002/cbic.202200474
  • Shen D, Bai Y, Liu Y. Chemical biology toolbox to visualize protein aggregation in live cells. Chembiochem. 2022;23(4):e202100443.
  • Frankel BA, Tong Y, Bentley ML, et al. Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. Biochemistry. 2007;46(24):7269–7278.
  • Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers. 2010;94(4):385–396.
  • Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011;75(1):192–212.
  • Sun F, Ding Y, Ji Q, et al. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci. 2012;109(38):15461–15466.
  • Cheung A, Duclos B. Stp1 and Stk1: the Yin and Yang of vancomycin sensitivity and virulence in vancomycin-intermediate Staphylococcus aureus strains. J Infect Dis. 2012;205(11):1625–1627.
  • Debarbouille M, Dramsi S, Dussurget O, et al. Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus. J Bacteriol. 2009;191(13):4070–4081. DOI:10.1128/JB.01813-08
  • Prust N, van der Laarse S, van den Toorn H, et al. In-depth characterization of the staphylococcus aureus phosphoproteome reveals new targets of Stk1. Mol Cell Proteomics. 2021;20:100034.
  • Nitulescu G, Margina D, Zanfirescu A, et al. Targeting bacterial sortases in search of anti-virulence therapies with low risk of resistance development. Pharmaceuticals (Basel). 2021;14(5):415.
  • Zong Y, Bice TW, Ton-That H, et al. Crystal structures of Staphylococcus aureus sortase a and its substrate complex. J Biol Chem. 2004;279(30):31383–31389.
  • Ilangovan U, Ton-That H, Iwahara J, et al. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc Natl Acad Sci. 2001;98(11):6056–6061.
  • Naik MT, Suree N, Ilangovan U, et al. Staphylococcus aureus Sortase a transpeptidase. calcium promotes sorting signal binding by altering the mobility and structure of an active site loop. J Biol Chem. 2006;281(3):1817–1826. DOI:10.1074/jbc.M506123200
  • Kenney LJ, Bauer MD, Silhavy TJ. Phosphorylation-dependent conformational changes in OmpR, an osmoregulatory DNA-binding protein of Escherichia coli. Proc Natl Acad Sci. 1995;92(19):8866–8870.
  • McCleary WR, Stock JB. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem. 1994;269(50):31567–31572.
  • Cao Q, Wang Y, Chen F, et al. A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in pseudomonas aeruginosa. PLOS Pathogens. 2014;10(8):e1004340. DOI:10.1371/journal.ppat.1004340
  • Yu L, Cao Q, Chen W, et al. A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. Sci Bull. 2022;67(2):198–212. DOI:10.1016/j.scib.2021.03.003
  • Cao Q, Yang N, Wang Y, et al. Mutation-induced remodeling of the BfmRS two-component system in pseudomonas aeruginosa clinical isolates. Sci Signal. 2020;13(656):eaaz1529. DOI:10.1126/scisignal.aaz1529
  • Xu C, Cao Q, Lan L. Glucose-binding of periplasmic protein GltB activates GtrS-GltR two-component system in pseudomonas aeruginosa. Microorganisms. 2021;9(2):447.
  • Barbieri CM, Stock AM. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using phos-tag-based reagents. Anal Biochem. 2008;376(1):73–82.
  • Melvin JA, Murphy CF, Dubois LG, et al. Staphylococcus aureus sortase a contributes to the trojan horse mechanism of immune defense evasion with its intrinsic resistance to Cys184 oxidation. Biochemistry. 2011;50(35):7591–7599. DOI:10.1021/bi200844h
  • Huang X, Aulabaugh A, Ding W, et al. Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemistry. 2003;42(38):11307–11315. DOI:10.1021/bi034391g
  • Salazar C, Hofer T. Multisite protein phosphorylation–from molecular mechanisms to kinetic models. FEBS J. 2009;276(12):3177–3198.
  • Bah A, Vernon RM, Siddiqui Z, et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature. 2015;519(7541):106–109. DOI:10.1038/nature13999
  • Ton-That H, Mazmanian SK, Alksne L, et al. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis. J Biol Chem. 2002;277(9):7447–7452.
  • Ton-That H, Mazmanian SK, Faull KF, et al. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J Biol Chem. 2000;275(13):9876–9881.
  • Ton-That H, Liu G, Mazmanian SK, et al. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci. 1999;96(22):12424–12429.
  • Yang N, Cao Q, Hu S, et al. Alteration of protein homeostasis mediates the interaction of pseudo-monas aeruginosa with Staphylococcus aureus. Mol Microbiol. 2020;114(3):423–442. DOI:10.1111/mmi.14519
  • Ding Y, Liu X, Chen F, et al. Metabolic sensor governing bacterial virulence in Staphylococcus aureus. Proc Natl Acad Sci. 2014;111(46):E4981–4990.