988
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Methyltransferase K-D-K-E motif influences the intercellular transmission of Newcastle disease virus

, , , , & ORCID Icon
Article: 2186336 | Received 21 Nov 2022, Accepted 27 Feb 2023, Published online: 15 Mar 2023

References

  • Alexander DJ, Aldous EW, Fuller CM. The long view: a selective review of 40 years of Newcastle disease research. Avian Pathol. 2012;41(4):329–17.
  • Jacob ST, Crozier I, Fischer WA, et al. Ebola virus disease. Nat Rev Dis Primers. 2020;6(1):13. DOI:10.1038/s41572-020-0147-3
  • Hindupur A, Menon T, Dhandapani P. Molecular investigation of human metapneumovirus in children with acute respiratory infections in Chennai, South India, from 2016–2018. Braz J Microbiol. 2022;53(2):655–661.
  • Pelzel-McCluskey A, Christensen B, Humphreys J, et al. Review of vesicular stomatitis in the United States with focus on 2019 and 2020 outbreaks. Pathogens. 2021;10(8):993. DOI:10.3390/pathogens10080993
  • Alexander DJ. Gordon memorial lecture. Newcastle disease. Br Poult Sci. 2001;42(1):5–22.
  • Saputri ME, Poetri ON, Soejoedono RD. Phylogenetic studies of Newcastle disease virus isolated from poultry flocks in South Sulawesi province, Indonesia, in 2019. J Adv Vet Anim Res. 2021;8(1):129–137.
  • Ul-Rahman A, Ishaq HM, Raza MA, et al. Zoonotic potential of Newcastle disease virus: old and novel perspectives related to public health. Rev Med Virol. 2021;32(1):e2246. DOI:10.1002/rmv.2246
  • Umar S, Teillaud A, Aslam HB, et al. Molecular epidemiology of respiratory viruses in commercial chicken flocks in Pakistan from 2014 through to 2016. BMC Vet Res. 2019;15(1):351. DOI:10.1186/s12917-019-2103-6
  • Li J, Fontaine-Rodriguez EC, Whelan SP. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J Virol. 2005;79(21):13373–13384.
  • Zhang X, Wei Y, Ma Y, et al. Identification of aromatic amino acid residues in conserved region VI of the large polymerase of vesicular stomatitis virus is essential for both guanine-N-7 and ribose 2’-O methyltransferases. Virology. 2010;408(2):241–252. DOI:10.1016/j.virol.2010.09.017
  • Jin X, Chen Y, Sun Y, et al. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res. 2013;176(1–2):45–52. DOI:10.1016/j.virusres.2013.05.001
  • Barral K, Sallamand C, Petzold C, et al. Development of specific dengue virus 2′-O- and N7-methyltransferase assays for antiviral drug screening. Antiviral Res. 2013;99(3):292–300. DOI:10.1016/j.antiviral.2013.06.001
  • Flory C, Chan KWK, Bifani AM, et al. Optimal flexibility of the linker region of Zika virus NS5 methyltransferase-polymerase is critical for virus replication. Antiviral Res. 2021;195:105194.
  • Valle C, Martin B, Debart F. The C-terminal domain of the Sudan ebolavirus L protein is essential for RNA binding and methylation. J Virol. 2020;94(12):e00520.
  • Sun J, Wei Y, Rauf A, et al. Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol. 2014;88(21):12348–12363. DOI:10.1128/JVI.01095-14
  • Wang Y, Liu R, Lu M, et al. Enhancement of safety and immunogenicity of the Chinese Hu191 measles virus vaccine by alteration of the S-adenosylmethionine (SAM) binding site in the large polymerase protein. Virology. 2018;518:210–220.
  • Ringeard M, Marchand V, Decroly E, et al. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565(7740):500–504. DOI:10.1038/s41586-018-0841-4
  • Daffis S, Szretter KJ, Schriewer J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468(7322):452–456. DOI:10.1038/nature09489
  • Kimura T, Katoh H, Kayama H, et al. Ifit1 inhibits Japanese encephalitis virus replication through binding to 5′ Capped 2′-O Unmethylated RNA. J Virol. 2013;87(18):9997–10003. DOI:10.1128/JVI.00883-13
  • Züst R, Cervantes-Barragan L, Habjan M, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12(2):137–143. DOI:10.1038/ni.1979
  • Li X, Sun L, Zhao J, et al. Mutations in the methyltransferase motifs of L protein attenuate Newcastle disease virus by regulating viral translation and cell-to-cell spread. Microbiol Spectr. 2021;9(2):e0131221. DOI:10.1128/Spectrum.01312-21
  • Jansens J, Tishchenko A, Favoreel HW. Bridging the gap: virus long-distance spread via tunneling nanotubes. J Virol. 2020;94(8):e02120.
  • Guo R, Davis D, Fang Y. Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology. 2018;517:122–134.
  • Streck TN, Zhao Y, Sundstrom MJ, et al. Human cytomegalovirus utilizes extracellular vesicles to enhance virus spread. J Virol. 2020;94(16):e00609–00620. DOI:10.1128/JVI.00609-20
  • Bello-Morales R, Praena B, de la Nuez C, et al. Role of microvesicles in the spread of herpes simplex virus 1 in oligodendrocytic cells. J Virol. 2018;92(10):e00088. DOI:10.1128/JVI.00088-18
  • Martin N, Sattentau Q. Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr Opin HIV AIDS. 2009;4(2):143–149.
  • Cifuentes-Munoz N, El Najjar F, Dutch RE. Viral cell-to-cell spread: conventional and non-conventional ways. Adv Virus Res. 2020;108:85–125.
  • Jolly C. Cell-to-cell transmission of retroviruses: innate immunity and interferon-induced restriction factors. Virology. 2011;411(2):251–259.
  • El Najjar F, Cifuentes-Muñoz N, Chen J, et al. Human metapneumovirus induces reorganization of the actin cytoskeleton for direct cell-to-cell spread. PLOS Pathog. 2016;12(9):e1005922. DOI:10.1371/journal.ppat.1005922
  • Roberts KL, Manicassamy B, Lamb RA. Influenza a virus uses intercellular connections to spread to neighboring cells. J Virol. 2015;89(3):1537–1549.
  • Yang Y, Bu Y, Zhao J, et al. Appropriate amount of W protein of avian avulavirus 1 benefits viral replication and W shows strain-dependent subcellular localization. Virology. 2019;538:71–85.
  • Yu X, Cheng J, He Z, et al. The glutamic residue at position 402 in the C-terminus of Newcastle disease virus nucleoprotein is critical for the virus. Sci Rep. 2017;7(1):17471. DOI:10.1038/s41598-017-17803-2
  • Liu MM, Cheng JL, Yu XH, et al. Generation by reverse genetics of an effective attenuated Newcastle disease virus vaccine based on a prevalent highly virulent Chinese strain. Biotechnol Lett. 2015;37(6):1287–1296. DOI:10.1007/s10529-015-1799-z
  • Zeng C, Evans JP, King T, et al. SARS-CoV-2 spreads through cell-to-cell transmission. Proc Natl Acad Sci, USA. 2022;119(1):e2111400119. DOI:10.1073/pnas.2111400119
  • Li J, Wang TJ, Whelan SPJ. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci, USA. 2006;103(22):8493–8498.
  • Murphy AM, Grdzelishvili VZ. Identification of Sendai virus L protein amino acid residues affecting viral mRNA cap methylation. J Virol. 2009;83(4):1669–1681.
  • Ogino T, Kobayashi M, Iwama M, et al. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem. 2005;28(6):4429–4435. DOI:10.1074/jbc.M411167200
  • Wu X, Zhang Y, Wang M, et al. Methyltransferase-deficient avian flaviviruses are attenuated due to suppression of viral RNA translation and induction of a higher innate immunity. Front Immunol. 2021;12:751688.
  • Weeks B, Friedman H. Laminin reduces HSV-1 spread from cell to cell in human keratinocyte cultures. Biochem Biophys Res Commun. 1997;230(2):466–469.
  • Panasiuk M, Rychłowski M, Derewońko N, et al. Tunneling nanotubes as a novel route of cell-to-cell spread of herpesviruses. J Virol. 2018;92(10):e00090. DOI:10.1128/JVI.00090-18
  • Labudova M, Ciampor F, Pastorekova S, et al. Cell-to-cell transmission of lymphocytic choriomeningitis virus MX strain during persistent infection and its influence on cell migration. Acta Virol. 2018;62(04):424–434. DOI:10.4149/av_2018_411
  • Iwami S, Takeuchi JS, Nakaoka S, et al. Cell-to-cell infection by HIV contributes over half of virus infection. Elife. 2015;4:e08150.
  • Zhong P, Agosto LM, Ilinskaya A, et al. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS ONE. 2013;8(1):e53138. DOI:10.1371/journal.pone.0053138
  • Sato Y, Watanabe S, Fukuda Y, et al. Cell-to-cell measles virus spread between human neurons is dependent on hemagglutinin and hyperfusogenic fusion protein. J Virol. 2018;92(6):e02166. DOI:10.1128/JVI.02166-17
  • Timpe JM, Stamataki Z, Jennings A, et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology. 2008;47(1):17–24. DOI:10.1002/hep.21959
  • Graw F, Martin DN, Perelson AS, et al. Quantification of hepatitis C virus cell-to-cell spread using a stochastic modeling approach. J Virol. 2015;89(13):6551–6561. DOI:10.1128/JVI.00016-15
  • Barberis E, Vv V, Falasca M, et al. Circulating exosomes are strongly involved in SARS-CoV-2 infection. Front Mol Biosci. 2021;8:632290.
  • Dagar S, Pathak D, Oza HV, et al. Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J. 2021;478(22):3977–3998. DOI:10.1042/BCJ20210077
  • Rustom A, Saffrich R, Markovic I, et al. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–1010. DOI:10.1126/science.1093133
  • Zheng F, Luo Z, Lin X, et al. Intercellular transfer of mitochondria via tunneling nanotubes protects against cobalt nanoparticle-induced neurotoxicity and mitochondrial damage. Nanotoxicology. 2022;15(10):1358–1379. DOI:10.1080/17435390.2022.2026515
  • Rajasekaran S, Witt SN. Trojan horses and tunneling nanotubes enable α-synuclein pathology to spread in Parkinson disease. PLoS Biol. 2021;19(7):e3001331.
  • Wang F, Chen X, Cheng H, et al. MICAL2PV suppresses the formation of tunneling nanotubes and modulates mitochondrial trafficking. EMBO Rep. 2021;22(7):e52006. DOI:10.15252/embr.202052006
  • Nasoni MG, Carloni S, Canonico B, et al. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J Pineal Res. 2021;71(1):e12747. DOI:10.1111/jpi.12747
  • Venkatesh VS, Lou E. Tunneling nanotubes: a bridge for heterogeneity in glioblastoma and a new therapeutic target? Cancer Rep. 2019;2(6):e1185.
  • Okura T, Taneno A, Oishi E. Cell-to-cell transmission of turkey herpesvirus in chicken embryo cells via tunneling nanotubes. Avian Dis. 2021;65(3):335–339.
  • Tiwari V, Koganti R, Russell G, et al. Role of tunneling nanotubes in viral infection, neurodegenerative disease, and cancer. Front Immunol. 2021;12:680891.
  • Guo R, Katz BB, Tomich JM, et al. Porcine reproductive and respiratory syndrome virus utilizes nanotubes for intercellular spread. J Virol. 2016;90(10):5163–5175. DOI:10.1128/JVI.00036-16
  • You Y, Liu T, Wang M, et al. Duck plague virus Glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread. Sci Rep. 2018;8(1):4069. DOI:10.1038/s41598-018-22447-x
  • Lennartz F, Bayer K, Czerwonka N, et al. Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell. Cell Microbiol. 2016;18(3):340–354. DOI:10.1111/cmi.12515
  • Zhang S, Liu X, Liang Z, et al. The influence of envelope C-terminus amino acid composition on the ratio of cell-free to cell-cell transmission for bovine foamy virus. Viruses. 2019;11(2):130. DOI:10.3390/v11020130
  • Wei S, Liu X, Ma B, et al. The US2 protein is involved in the penetration and cell-to-cell spreading of DEV in vitro. J Basic Microbiol. 2014;54(9):1005–1011. DOI:10.1002/jobm.201300068
  • Tyrrell DL, Ehrnst A. Transmembrane communication in cells chronically infected with measles virus. J Cell Biol. 1979;81(2):396–402.
  • Duan Z, Hu Z, Zhu J, et al. Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding. Arch Virol. 2014;159(7):1813–1819. DOI:10.1007/s00705-014-1998-2
  • Ke Z, Strauss JD, Hampton CM, et al. Promotion of virus assembly and organization by the measles virus matrix protein. Nat Commun. 2018;9(1):1736. DOI:10.1038/s41467-018-04058-2
  • Förster A, Maertens GN, Farrell PJ, et al. Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol. 2015;89(8):4624–4635. DOI:10.1128/JVI.03500-14