652
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

A distinct variant of the SzM protein of Streptococcus equi subsp. zooepidemicus recruits C1q independent of IgG binding and inhibits activation of the classical complement pathway

, , ORCID Icon & ORCID Icon
Article: 2235461 | Received 12 Apr 2023, Accepted 06 Jul 2023, Published online: 14 Jul 2023

References

  • Velineni S, Timoney JF, Russell K, et al. Clones of Streptococcus zooepidemicus from outbreaks of hemorrhagic canine pneumonia and associated immune responses. Clin Vaccin Immunol. 2014;21(9):1246–11. doi: 10.1128/CVI.00222-14
  • Las Heras A, Vela AI, Fernández E, Legaz E, Domínguez L, Fernández-Garayzábal JF. Unusual outbreak of clinical mastitis in dairy sheep caused by Streptococcus equi subsp. zooepidemicus.J Clin Microbiol. 2002;40(3):1106–1108. doi: 10.1128/JCM.40.3.1106-1108.2002
  • Rasmussen CD, Haugaard MM, Petersen MR, et al. Streptococcus equi subsp. zooepidemicus isolates from equine infectious endometritis belong to a distinct genetic group. Vet Res. 2013;44(1):26. doi: 10.1186/1297-9716-44-26
  • Petersen MR, Skive B, Christoffersen M, et al. Activation of persistent Streptococcus equi subspecies zooepidemicus in mares with subclinical endometritis. Vet Microbiol. 2015;179(1–2):119–125. doi: 10.1016/j.vetmic.2015.06.006
  • Firth EC, Dik KJ, Goedegebuure SA, et al. Polyarthritis and bone infection in foals. Zentralblatt für Veterinärmedizin Reihe B. 1980;27(2):102–124. doi: 10.1111/j.1439-0450.1980.tb01644.x
  • Björnsdóttir S, Harris SR, Svansson V, et al. Genomic dissection of an Icelandic epidemic of respiratory disease in horses and associated zoonotic cases. MBio. 2017;8(4):e00826–17. doi: 10.1128/mBio.00826-17
  • de Costa MO, Lage B. Streptococcus equi subspecies zooepidemicus and sudden deaths in swine, Canada. Emerg Infect Dis. 2020;26(10):2522–2524. doi: 10.3201/eid2610.191485
  • Chen X, Resende-De-Macedo N, Sitthicharoenchai P, et al. Genetic characterization of Streptococcus equi subspecies zooepidemicus associated with high swine mortality in the United States. Transbound Emerg Dis. 2020;67(6):2797–2808. doi: 10.1111/tbed.13645
  • Feng H. Outbreak of swine streptococcosis in Sichan province and identification of pathogen. Anim Husbandry Vet Med Lett. 1977;2:7–12.
  • Pelkonen S, Lindahl SB, Suomala P, et al. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg Infect Dis. 2013;19(7):1041–1048. doi: 10.3201/eid1907.121365
  • Watson JR, Leber A, Velineni S, et al. Recurrent Streptococcus equi subsp. zooepidemicus bacteremia in an infant. J Clin Microbiol. 2015;53:3096–3099. doi: 10.1128/JCM.01306-15
  • Ural O, Tuncer I, Dikici N, et al. Streptococcus zooepidemicus meningitis and bacteraemia. Scand J Infect Dis. 2003;35(3):206–207. doi: 10.1080/00365540310000076
  • Martinez-Luengas F, Inclan GM, Pastor A, et al. Endocarditis due to Streptococcus zooepidemicus. Can Med Assoc J. 1982;127:13.
  • Timoney JF, Walker J, Zhou M, et al. Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect Immun. 1995;63(4):1440–1445. doi: 10.1128/iai.63.4.1440-1445.1995
  • Bergmann R, M-CMC J, Uhlig A, et al. Prominent binding of human and equine fibrinogen to Streptococcus equi subsp. zooepidemicus is mediated by specific SzM types and is a distinct phenotype of zoonotic isolates. Infect Immun. 2020;88(1):e00559–19. doi: 10.1128/IAI.00559-19
  • Velineni S, Timoney JF. Identification of novel immunoreactive proteins of Streptococcus zooepidemicus with potential as vaccine components. Vaccine. 2013;31(38):4129–4135. doi: 10.1016/j.vaccine.2013.06.100
  • Velineni S, Timoney JF. Characterization and protective immunogenicity of the SzM protein of Streptococcus zooepidemicus nc78 from a clonal outbreak of equine respiratory disease. Clin Vaccin Immunol. 2013;20(8):1181–1188. doi: 10.1128/CVI.00069-13
  • Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol. 2005;56(1):28–39. doi: 10.1111/j.1365-2958.2005.04527.x
  • Sandin C, Carlsson F, Lindahl G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol. 2006;56(1):28–39. doi: 10.1111/j.1365-2958.2005.04913.x
  • Ermert D, Weckel A, Magda M, et al. Human IgG increases virulence of Streptococcus pyogenes through complement evasion. J Immunol. 2018;200(10):3495–3505. doi: 10.4049/jimmunol.1800090
  • Thern A, Stenberg L, Dahlbäck B, et al. Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J Immunol. 1995;154(1):375–386. doi: 10.4049/jimmunol.154.1.375
  • Koroleva IV, Sjöholm AG, Schalén C. Binding of complement subcomponent C1q to Streptococcus pyogenes: evidence for interactions with the M5 and FcRA76 proteins. FEMS Immunol Med Microbiol. 2006;20(1):11–20. doi: 10.1111/j.1574-695X.1998.tb01106.x
  • Pohl DA, Gibbons JJ, Tsai CC, et al. Isolation and purification of human C1q from plasma. J Immunol Methods. 1980;36(1):13–27. doi: 10.1016/0022-1759(80)90090-3
  • Seele J, Beineke A, Hillermann LM, et al. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is involved in complement evasion. Vet Res. 2015;46(1):1–14. doi: 10.1186/s13567-015-0171-6
  • Whitnack E, Beachey EH. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J Exp Med. 1985;198; 162(6):1983–1997. doi: 10.1084/jem.162.6.1983
  • Sanderson-Smith M, De Oliveira DMP, Guglielmini J, et al. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis. 2014;210(8):1325. doi: 10.1093/infdis/jiu260
  • Khakzad H, Happonen L, Karami Y, et al. Structural determination of Streptococcus pyogenes M1 protein interactions with human immunoglobulin G using integrative structural biology. PLoS Comput Biol. 2021;17(1):e1008169. doi: 10.1371/journal.pcbi.1008169
  • Nitsche-Schmitz PD, Johansson HM, Sastalla I, et al. Group G Streptococcal IgG binding molecules FOG and protein G have different impacts on opsonization by C1q. J Biol Chem. 2007;282(24):17530–17536. doi: 10.1074/jbc.M702612200
  • Diebolder CA, Beurskens FJ, de Jong RN, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 1979;343(6176):1260–1263. 2014. doi: 10.1126/science.1248943
  • Cruz AR, den Boer MA, Strasser J, et al. Staphylococcal protein a inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci USA. 2021;118(7):e2016772118. doi: 10.1073/pnas.2016772118
  • Nordenfelt P, Waldemarson S, Linder A, et al. Antibody orientation at bacterial surfaces is related to invasive infection. J Exp Med. 2012;209(13):2367–2381. doi: 10.1084/jem.20120325
  • Whitnack E, Poirier TP, Beachey EH. Complement-mediated opsonization of group A streptococci inhibited by the binding of fibrinogen to surface M protein fibrillae. In: Cabello Felipe, Pruzzo Carla, editors. Bacteria, complement and the phagocytic cell. Springer, Berlin, Heidelberg; 2012. (NATO ASI Series; vol.24). doi: 10.1007/978-3-642-85718-8_15
  • Meehan M, Lynagh Y, Woods C, et al. The fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi additionally binds IgG and contributes to virulence in a mouse model. Microbiology (N Y). 2001;147(12):3311–3322. doi: 10.1099/00221287-147-12-3311
  • Fulde M, Rohde M, Polok A, et al. Cooperative plasminogen recruitment to the surface of Streptococcus canis via M protein and enolase enhances bacterial survival. MBio. 2013;4(2):e00629–12. doi: 10.1128/mBio.00629-12
  • Agarwal V, Sroka M, Fulde M, et al. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence. J Biol Chem. 2014;289(22):15833–15844. doi: 10.1074/jbc.M113.530212
  • Deng S, Xu T, Fang Q, et al. The surface-exposed protein SntA contributes to complement evasion in zoonotic Streptococcus suis. Front Immunol. 2018;9:1063. doi: 10.3389/fimmu.2018.01063
  • Moore SR, Menon SS, Cortes C, et al. Hijacking factor H for complement immune evasion. Front Immunol. 2021;12:602277. doi: 10.3389/fimmu.2021.602277
  • Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: The specific roles of host/parasite molecules and Trypanosoma cruzi calreticulin. Front Microbiol. 2017;8:1667. doi: 10.3389/fmicb.2017.01667
  • Suchitra S, Joshi P. Characterization of Haemonchus contortus calreticulin suggests its role in feeding and immune evasion by the parasite. Biochim Biophys Acta. 2005;1722(3):293–303. doi: 10.1016/j.bbagen.2004.12.020
  • Shao S, Hao C, Zhan B, et al. Trichinella spiralis calreticulin S-domain binds to human complement C1q to interfere with C1q-mediated immune functions. Front Immunol. 2020;11:572326. doi: 10.3389/fimmu.2020.572326
  • Lewis MJ, Meehan M, Owen P, et al. A common theme in interaction of bacterial immunoglobulin-binding proteins with immunoglobulins illustrated in the equine system. J Biol Chem. 2008;283(25):17615. doi: 10.1074/jbc.M709844200
  • Agarwal V, Ahl J, Riesbeck K, et al. An alternative role of C1q in bacterial infections: Facilitating Streptococcus pneumoniae adherence and invasion of host cells. J Immunol. 2013;191(8):4235–4245. doi: 10.4049/jimmunol.1300279
  • McKay EJ. A simple two-step procedure for the purification of plasma C1q from different animal species. Immunol Lett. 1981;3(5):303–308. doi: 10.1016/0165-2478(81)90010-9
  • De Jong NWM, Vrieling M, Garcia BL, et al. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. J Biol Chem. 2018;293(12):4468–4477. doi: 10.1074/jbc.RA117.000599