1,611
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Biallelic ELMO3 mutations and loss of function for DOCK-mediated RAC1 activation result in intellectual disability

, , , , , , , , , ORCID Icon & show all
Pages 48-55 | Received 07 Oct 2020, Accepted 19 Nov 2020, Published online: 04 Mar 2021

References

  • Laurin M, Cote JF. Insights into the biological functions of dock family guanine nucleotide exchange factors. Genes Dev. 2014;28(6):533–547.
  • Patel M, Pelletier A, Cote JF. Opening up on ELMO regulation: new insights into the control of Rac signaling by the DOCK180/ELMO complex. Small GTPases. 2011;2(5):268–275.
  • Miyamoto Y, Yamauchi J. Cellular signaling of dock family proteins in neural function. Cell Signal. 2010;22(2):175–182.
  • Namekata K, Watanabe H, Guo X, et al. Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG. Genes Cells. 2012;17(8):688–697. .
  • Li W, Tam KMV, Chan WWR, et al. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1. J Biol Chem. 2018;293(20):7674–7688. .
  • Ueda S, Negishi M, Rac KH. GEF dock4 interacts with cortactin to regulate dendritic spine formation. Mol Biol Cell. 2013;24(10):1602–1613.
  • Makihara S, Morin S, Ferent J, et al. Polarized dock activity drives shh-mediated axon guidance. Dev Cell. 2018;46(4):e417. .
  • Biersmith B, Liu ZC, Bauman K, et al. The DOCK protein sponge binds to ELMO and functions in drosophila embryonic CNS development. PLoS One. 2011;6(1):e16120.
  • Shi L. Dock protein family in brain development and neurological disease. Commun Integr Biol. 2013;6(6):e26839.
  • Zeidan-Chulia F, Salmina AB, Noda M, et al. Rho GTPase RAC1 at the molecular interface between genetic and environmental factors of autism spectrum disorders. Neuromolecular Med. 2015;17(4):333–334.
  • Dong T, He J, Wang S, et al. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes. Proc Natl Acad Sci U S A. 2016;113(27):7644–7649. .
  • Chang L, Yang J, Jo CH, et al. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun. 2020;11(1):3464. .
  • Patel M, Margaron Y, Fradet N, et al. An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling. Curr Biol. 2010;20(22):2021–2027. .
  • Patel M, Chiang TC, Tran V, et al. The Arf family GTPase Arl4A complexes with ELMO proteins to promote actin cytoskeleton remodeling and reveals a versatile Ras-binding domain in the ELMO proteins family. J Biol Chem. 2011;286(45):38969–38979.
  • Hamoud N, Tran V, Aimi T, et al. Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. Nat Commun. 2018;9(1):4470. .
  • Peng HY, Yu Q-F, Shen W, et al. Knockdown of ELMO3 suppresses growth, invasion and metastasis of colorectal cancer. Int J Mol Sci. 2016;17(12):2119. .
  • Kristensen LS, Soes S, Hansen LL. ELMO3 : a direct driver of cancer metastasis? Cell Cycle. 2014;13(16):2483–2484.
  • Goyette M-A, Cote J-F. NSCLC metastasis: going with ELMO3. Oncotarget. 2014;5(15):5850–5851.
  • Coskun M, Boyd M, Olsen J, et al. Control of intestinal promoter activity of the cellular migratory regulator gene ELMO3 by CDX2 and SP1. J Cell Biochem. 2010;109(6):1118–1128.
  • Cote JF, Vuori K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci. 2002;115(24):4901–4913.
  • Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014;93(10–12):466–477.
  • Iwata-Otsubo A, Ritter AL, Weckselbatt B, et al. DOCK3 related neurodevelopmental syndrome: biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia. Am J Med Genet A. 2018;176(1):241–245. .
  • Helbig KL, Mroske C, Moorthy D, et al. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability. Clin Genet. 2017;92(4):430–433.
  • Riazuddin S, Hussain M, Razzaq A, et al. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol Psychiatry. 2017;22(11):1604–1614. .
  • Tejada-Simon MV. Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem. 2015;133(6):767–779.
  • Reijnders MRF, Ansor NM, Kousi M, et al. RAC1 missense mutations in developmental disorders with diverse phenotypes. Am J Hum Genet. 2017;101(3):466–477. .
  • Lesch KP, Merker S, Reif A, et al. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol. 2013;23(6):479–491.
  • Bennett MR, Lagopoulos J. Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: a comparison between autism spectrum disorder, ADHD and dyslexia. Int J Dev Neurosci. 2015;46(1):132–143.
  • Chen Y-C, Sudre G, Sharp W, et al. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol Psychiatry. 2018;23(3):683–690. .
  • Namekata K, Harada C, Guo X, et al. Dock3 stimulates axonal outgrowth via GSK-3beta-mediated microtubule assembly. J Neurosci. 2012;32(1):264–274. .
  • de Silva MG, Elliot K, Dahl HH, et al. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet. 2003;40(10):733–740.
  • de Curtis I. Roles of Rac1 and Rac3 GTPases during the development of cortical and hippocampal GABAergic interneurons. Front Cell Neurosci. 2014;8:307.
  • Won H, Mah W, Kim E, et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat Med. 2011;17(5):566–572. .
  • Lin YC, Frei JA, Kilander MB, et al. Subset of autism-associated genes regulate the structural stability of neurons. Front Cell Neurosci. 2016;10:263.
  • Mitra I, Lavillaureix A, Yeh E, et al. Reverse pathway genetic approach identifies epistasis in autism spectrum disorders. PLoS Genet. 2017;13(1):e1006516. .
  • Kochinke K, Zweier C, Nijhof B, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98(1):149–164. .
  • Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–347. .
  • Shi L, Zhang X, Golhar R, et al. Whole-genome sequencing in an autism multiplex family. Mol Autism. 2013;4(1):8. .