281
Views
1
CrossRef citations to date
0
Altmetric
Brief Report

The N-terminal Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells

, ORCID Icon & ORCID Icon
Pages 77-83 | Received 11 Dec 2020, Accepted 19 Feb 2021, Published online: 16 Apr 2021

References

  • Satir P, Christensen ST. Overview of structure and function of mammalian cilia. PMID:17009929 Annu Rev Physiol. 2007;69(1:377–400.
  • Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. PMID:28698599 Nat Rev Mol Cell Biol. 2017;18(9):533–547.
  • Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. PMID: 32456460 Crit Rev Biochem Mol Biol. 2020;55(2):179–196.
  • Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. PMID:13978319 J Cell Biol. 1962;15(2):363–377.
  • Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. PMID: 5661997 J Cell Sci. 1968;3(2): 207–230.
  • Follit JA, Tuft RA, Fogarty KE, et al. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. PMID: 16775004 Mol Biol Cell. 2006;17(9):3781–3792.
  • Knödler A, Feng S, Zhang J, et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. PMID: 20308558 Proc Natl Acad Sci USA. 2010;107(14):6346–6351.
  • Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. PMID: 32542850 Febs J. 2021;288(1):36–55.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. PMID:19603039 Nat Rev Mol Cell Biol. 2009;10(8):513–525.
  • Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. PMID:21248164 Physiol Rev. 2011;91(1):119–149.
  • Pfeffer SR. Rab GTPase regulation of membrane identity. PMID:23639309 Curr Opin Cell Biol. 2013;25(4):414–419.
  • Yoshimura SI, Egerer J, Fuchs E, et al. Functional dissection of Rab GTPases involved in primary cilium formation. PMID:17646400 J Cell Biol. 2007;178(3):363–369.
  • Nachury MV, Loktev AV, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. PMID:17574030 Cell. 2007;129(6):1201–1213.
  • Onnis A, Finetti F, Patrussi L, et al. The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. PMID:26021297 Cell Death Differ. 2015;22(10):1687–1699.
  • Dickinson ME, Flenniken AM, Ji X, et al. High-throughput discovery of novel developmental phenotypes. PMID:27626380 Nature. 2016;537(7621):508–514.
  • Steger M, Diez F, Dhekne HS, et al. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. PMID:29125462 eLife. 2017;6:e31012.
  • Pusapati GV, Kong JH, Patel BB, et al. CRISPR screens uncover genes that regulate target cell sensitivity to the morphogen sonic hedgehog. PMID:29290584 Dev Cell. 2018;44(1):113–129.
  • Xu S, Liu Y, Meng Q, et al. Rab34 small GTPase is required for Hedgehog signaling and an early step of ciliary vesicle formation in mouse. PMID:30301781 J Cell Sci. 2018;131(21):jcs213710.
  • Breslow DK, Hoogendoorn S, Kopp AR, et al. A CRISPR-based screen for Headgehog signaling provides insights into ciliary function and ciliopathies. PMID:29459677 Nat Genet. 2018;50(3):460–471.
  • Oguchi ME, Okuyama K, Homma Y, et al. A comprehensive analysis of Rab GTPases reveals a role for Rab34 in serum starvation-induced primary ciliogenesis. PMID:32669361 J Biol Chem. 2020;295(36):12674–12685.
  • Gerondopoulos A, Strutt H, Stevenson NL, et al. Planar cell polarity effector proteins inturned and fuzzy form a Rab23 GEF complex. PMID:31564489 Curr Biol. 2019;29(19):3323–3330.
  • Sato T, Iwano T, Kunii M, et al. Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. PMID:24213529 J Cell Sci. 2014;127(2):422–431.
  • Sobajima T, Yoshimura SI, Iwano T, et al. Rab11a is required for apical protein localisation in the intestine. PMID:25527643 Biol Open. 2014;4(1):86–94.
  • Kuwahara T, Inoue K, D’Agati VD, et al. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. PMID:27424887 Sci Rep. 2016;6:29945.
  • Wang T, Hong W. Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. PMID:12475955 Mol Biol Cell. 2002;13(12):4317–4332.
  • Chen L, Hu J, Yun Y, et al. Rab36 regulates the spatial distribution of late endosomes and lysosomes through a similar mechanism to Rab34. PMID:19961360  Mol Mem Biol. 2010; 27(1):23–30. 
  • Ganga AK, Kennedy MC, Oguchi ME, et al. Rab34 GTPase mediates ciliary membrane biogenesis in the intracellular ciliogenesis pathway. bioRxiv. 2020. 10.1101/2020.10.29.360891
  • Matsui T, Ohbayashi N, Fukuda M. The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes. PMID: 22740695 J Biol Chem. 2012;287(34):28619–28631.
  • Wu M, Wang T, Loh E, et al. Structural basis for recruitment of RILP by small GTPase Rab7. PMID: 15933719 Embo J. 2005;24(8):1491–1501.
  • Kukimoto-Niino M, Sakamoto A, Kanno E, et al. Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. PMID: 18940604 Structure. 2008;16(10):1478–1490.
  • Gulbranson DR, Davis EM, Demmitt BA, et al. RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. PMID: 28894007 Proc Natl Acad Sci USA. 2017;114(39):E8224–E8233.
  • Homma Y, Kinoshita R, Kuchitsu Y, et al. Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. PMID:31072826 J Cell Biol. 2019;218(6):2035–2050.
  • Fukuda M, Kojima T, Aruga J, et al. Functional diversity of C2 domains of synaptotagmin family: mutational analysis of inositol high polyphosphate binding domain. PMID:7592870 J Biol Chem. 1995;270(44):26523–26527.
  • Morita S, Kojima T, Kitamura T. Plat-E: an efficient and stable system for transient packaging of retroviruses. PMID:10871756 Gene Ther. 2000;7(12):1063–1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.