432
Views
1
CrossRef citations to date
0
Altmetric
Review

GPCRs that Rhoar the Guanine nucleotide exchange factors

ORCID Icon & ORCID Icon
Pages 84-99 | Received 01 Jan 2021, Accepted 24 Feb 2021, Published online: 14 Apr 2021

References

  • Trepat X, Chen Z, Jacobson K. Cell migration. Compr Physiol. 2012;2(4):2369–2392.
  • Zegers MM, Friedl P. Rho GTPases in collective cell migration. Small GTPases 2014; 5:e983869.
  • Paoletti S, Petkovic V, Sebastiani S, et al. A rich chemokine environment strongly enhances leukocyte migration and activities. Blood. 2005;105(9):3405–3412.
  • Peplow PV, Chatterjee MP. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine. 2013;62(1):1–21.
  • Coombs VA, Nissen BK, Marks R, et al. The influence of temperature on epidermal cell migration in vitro. Br J Exp Pathol. 1973;54(6): 673–677. PMID: 4798773.
  • Su C, Zhang B, Liu W, et al. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation. Oncol Rep. 2016;36(2):1048–1054.
  • Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back. Science. 2003;302(5651):1704–1709.
  • Martin K, Reimann A, Fritz RD, et al. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci Rep. 2016;6(1):1–14.
  • Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389–399.
  • Nobes CD, Hall A. Rho 1. nobes CD, hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999;144(6):1235–1244.
  • Nobes CD, Rho HA. Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81(1):53–62.
  • Van Leeuwen FN, Olivo C, Grivell S, et al. Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1. J Biol Chem. 2003;278(1):400–406.
  • Manser E, Loo TH, Koh CG, et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell. 1998;1(2):183–192.
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–877.
  • Cho HJ, Kim BY, Baek KE, et al. Regulation of Rho GTPases by RhoGDIs in human cancers. Cells. 2019;8(9):1–12.
  • Buchsbaum RJ. Rho activation at a glance. J Cell Sci. 2007;120(7):1149–1152.
  • Dovas A, Couchman JR. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J. 2005;390(1):1–9.
  • Goicoechea SM, Awadia S, Garcia-Mata R. I’m coming to GEF you: regulation of RhoGEFs during cell migration. Cell Adhes Migr. 2014;8(6):535–549.
  • Zheng Y, Quilliam LA. Activation of the Ras superfamily of small GTPases.Workshop on exchange factors. EMBO Rep. 2003;4(5):463–468.
  • Hartmann S, Ridley AJ, Lutz S. The function of rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol. 2015;6:276.
  • Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25(1):4–12.
  • Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv. 2013;31:1676–1694.
  • Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17:1–13.
  • Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18(1):1–16.
  • Cotton M, Claing A. G protein-coupled receptors stimulation and the control of cell migration. Cell Signal. 2009;21(7):1045–1053.
  • Rossman KL, Der CJ, Sondek J. GEF means go: turning on Rho GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular Cell Biology. 2005;6(2):167–180.
  • Viaud J, Lagarrigue F, Ramel D, et al. Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nat Commun. 2014;5(1):1–17.
  • Baumeister MA, Martinu L, Rossman KL, et al. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. J Biol Chem. 2003;278(13):11457–11464.
  • Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16(13):1587–1609.
  • Consonni SV, Brouwer PM, Van Slobbe ES, et al. The PDZ domain of the guanine nucleotide exchange factor PDZGEF directs binding to phosphatidic acid during brush border formation. PLoS One. 2014;9(5):e98253.
  • Fukuharaa S, Chikumi H, Silvio Gutkind J. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene. 2001;20(13):1661–1668.
  • Xu Z, Gakhar L, Bain FE, et al. The Tiam1 guanine nucleotide exchange factor is autoinhibited by its pleckstrin homology coiled-coil extension domain. J Biol Chem. 2017;292(43):17777–17793.
  • Premkumar L, Bobkov AA, Patel M, et al. Structural basis of membrane targeting by the Dock180 family of Rho family guanine exchange factors (Rho-GEFs). J Biol Chem. 2010;285(17):13211–13222.
  • Brugnera E, Haney L, Grimsley C, et al. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol. 2002;4(8):574–582.
  • Kulkarni K, Yang J, Zhang Z, et al. Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. J Biol Chem. 2011;286(28):25341–25351.
  • Chang L, Yang J, Jo CH, et al. Structure of the DOCK2−ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun. 2020;11(1):1–17.
  • Lu M, Kinchen JM, Rossman KL, et al. A steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs. Curr Biol. 2005;15(4):371–377.
  • Chen Z, Guo L, Hadas J, et al. Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain. J Biol Chem. 2012;287(30):25490–25500.
  • Patel M, Karginov AV. Phosphorylation-mediated regulation of GEFs for RhoA. Cell Adhes Migr. 2014;8(1):11–18.
  • Booden MA, Siderovski DP, Der CJ. Leukemia-associated Rho Guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Mol Cell Biol. 2002;22(12):4053–4061.
  • Martin JW, Cavagnini KS, Brawley DN, et al. A Gα12-specific binding domain in AKAP-Lbc and p114RhoGEF. J Mol Signal. 2016;11:1–17.
  • Bartolomé RA, Molina-Ortiz I, Samaniego R, et al. Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion. Cancer Res. 2006;66(1):248–258.
  • Yamada T, Ohoka Y, Kogo M, et al. Physical and functional interactions of the lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide exchange factors (RhoGEFs). J Biol Chem. 2005;280(19):19358–19363.
  • Kourlas PJ, Strout MP, Becknell B, et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2000;97(5):2145–2150.
  • Medlin MD, Staus DP, Dubash AD, et al. Sphingosine 1-phosphate receptor 2 signals through leukemia-associated RhoGEF (LARG), to promote smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol. 2010;30(9):1779–1786.
  • Wang Q, Liu M, Kozasa T, et al. Thrombin and lysophosphatidic acid receptors utilize distinct rhoGEFs in prostate cancer cells. J Biol Chem. 2004;279(28):28831–28834.
  • Goulimari P, Knieling H, Engel U, et al. LARG and mDia1 Link Gα 12/13 to Cell Polarity and Microtubule Dynamics. Mol Biol Cell. 2008;19(1):30–40.
  • Patel M, Kawano T, Suzuki N, et al. Gα13/PDZ-RhoGEF/RhoA signaling is essential for gastrin- releasing peptide receptor – mediated colon cancer cell migration. Molecular Pharmacology. 2014;86(3):252–262.
  • Struckhoff AP, Rana MK, Kher SS, et al. PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell motility through spatial regulation of RhoA. J Cell Sci. 2013;126(19):4514–4526.
  • Mathew D, Kremer KN, Torres RM. ARHGEF1 deficiency reveals Gα13-associated GPCRs are critical regulators of human lymphocyte function. J Clin Invest. 2019;129(3):965–968.
  • Castillo-Kauil A, García-Jiménez I, Cervantes-Villagrana RD, et al. Gαsdirectly drives PDZ-RhoGEF signaling to Cdc42. J Biol Chem. 2020;295(50):16920–16928.
  • Slepak VZ, Pronin A. A Gs-RhoGEF interaction: an old G protein finds a new job. J Biol Chem. 2020;295(50):16929–16930.
  • Fukuhara S, Murga C, Zohar M, et al. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem. 1999;274(9):5868–5879.
  • Scarlett KA, White ESZ, Coke CJ, et al. Agonist-induced CXCR4 and CB2 heterodimerization inhibits Gα13/RhoA-mediated migration. Mol Cancer Res. 2018;16(4):728–739.
  • Ma X, Zhao Y, Daaka Y, et al. Acute activation of β2-adrenergic receptor regulates focal adhesions through βArrestin2- and p115RhoGEF protein-mediated activation of RhoA. J Biol Chem. 2012;287(23):18925–18936.
  • Chen Z, Guo L, Sprang SR, et al. Modulation of a GEF switch: autoinhibition of the intrinsic guanine nucleotide exchange activity of p115-RhoGEF. Protein Sci. 2011;20:(1):107–117.
  • Appert-Collin A, Cotecchia S, Nenniger-Tosato M, et al. The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2007;104(24):10140–10145.
  • Turton KB, Wilkerson EM, Hebert AS, et al. Expression of novel “LOCGEF” isoforms of ARHGEF18 in eosinophils. J Leukoc Biol. 2018;104(1):135–145.
  • Cervantes-Villagrana RD, Color-Aparicio VM, Reyes-Cruz G, et al. Protumoral bone marrow-derived cells migrate via Gβγ-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs. J Cell Commun Signal. 2019;13(2):179–191.
  • Jaiswal M, Dvorsky R, Ahmadian MR. Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins. J Biol Chem. 2013;288(6):4486–4500.
  • Welch HCE Regulation and function of P-Rex family Rac-GEFs. 2015; 6:49–70.
  • Niggli V. Signaling to migration in neutrophils: importance of localized pathways. Int J Biochem Cell Biol. 2003;35(12):1616–1638.
  • Mazaki Y, Hashimoto S, Tsujimura T, et al. Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nat Immunol. 2006;7(7):724–731.
  • Premont RT, Perry SJ, Schmalzigaug R, et al. The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell Signal. 2004;16(9):1001–1011.
  • Bustelo XR. The VAV family of signal transduction molecules. Crit. Rev. Oncog. 1996;7(1–2):65–88.
  • Razidlo GL, Schroeder B, Chen J, et al. Vav1 as a central regulator of invadopodia assembly. Curr Biol. 2014;24(1):86–93.
  • Fujikawa K, Miletic AV, Alt FW, et al. Vav1/2/3-null Mice Define an Essential Role for Vav Family Proteins in Lymphocyte Development and Activation but a Differential Requirement in MAPK Signaling in T and B Cells. J Exp Med. 2003;198(10):1595–1608.
  • Shepherd TR, Hard RL, Murray AM, et al. Distinct ligand specificity of the Tiam1 and Tiam2 PDZ domains. Biochemistry. 2011;50(8):1296–1308.
  • Wang Y, Xu X, Pan M, et al. ELMO1 directly interacts with Gβγ subunit to transduce GPCR signaling to Rac1 activation in chemotaxis. J Cancer. 2016;7(8):973–983.
  • Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol. 2020;32(1):5–15.
  • Fukui Y, Hashimoto O, Sanui T, et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature. 2001;412(6849):826–831.
  • Diviani D, Soderling J, Scott JD. AKAP-Lbc anchors protein kinase a and nucleates Gα12-selective Rho-mediated stress fiber formation. J Biol Chem. 2001;276(47):44247–44257.
  • Cavin S, Maric D, Diviani D. A-kinase anchoring protein-Lbc promotes pro-fibrotic signaling in cardiac fibroblasts. Biochim Biophys Acta Mol Cell Res. 2014;1843(2):335–345.
  • Aittaleb M, Boguth CA, Tesmer JJG. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol Pharmacol. 2010;77(2):111–125.
  • O’Connor KL, Chen M, Towers LN. Integrin α6β4 cooperates with LPA signaling to stimulate Rac through AKAP-LBc-mediated RhoA activation. Am J Physiol Cell Physiol. 2012;302:2–11.
  • Paulucci-Holthauzen AA, Vergara LA, Bellot LJ, et al. Spatial distribution of protein kinase A activity during cell migration is mediated by A-kinase anchoring protein AKAP Lbc. J Biol Chem. 2009;284(9):5956–5967.
  • Blomquist A, Schwörer G, Schablowski H, et al. Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor. Biochem J. 2000;352(2):319–325.
  • Niu J, Profirovic J, Pan H, et al. g protein βγ subunits stimulate p114rhogef, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production. Circ Res. 2003;93(9):848–856.
  • Terry SJ, Elbediwy A, Zihni C, et al. Stimulation of cortical myosin phosphorylation by p114RhoGEF drives cell migration and tumor cell invasion. PLoS One. 2012;7(11):e50188.
  • Philippe JM, Lellouch AC, Lecuit T, Garcia De Las Bayonas A. Distinct RhoGEFs activate apical and junctional contractility under control of G Proteins during Epithelial Morphogenesis. Curr Biol. 2019;29(20):3370–3385.e7. .
  • Marivin A, Morozova V, Walawalkar I, et al. GPCR-independent activation of G proteins promotes apical cell constriction in vivo. J Cell Biol. 2019;218(5):1743–1763.
  • Souchet M, Portales-Casamar E, Mazurais D, et al. Human p63RhoGEF, a novel RhoA-specific guanine nucleotide exchange factor, is localized in cardiac sarcomere. J Cell Sci. 2002;115(Pt 3):629–640. PubMed 11861769.
  • Lutz S, Freichel-Blomquist A, Yang Y, et al. The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J Biol Chem. 2005;280(12):11134–11139.
  • Lutz S, Shankaranarayanan A, Coco C, et al. Structure of Gαq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science. 2007;318(5858):1923–1927. (80-).
  • Rojas RJ, Yohe ME, Gershburg S, et al. Gαq directly activates p63RhoGEF and trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. J Biol Chem. 2007;282(40):29201–29210.
  • Guo X, Stafford LJ, Bryan B, et al. A Rac/ Cdc42-specific exchange factor, GEFT, induces cell proliferation, transformation, and migration. J Biol Chem. 2003;278(15):13207–13215.
  • Kruse K, Lee QS, Sun Y, et al. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J Cell Biol. 2019;218(1):299–316.
  • Cervantes-Villagrana RD, Adame-García SR, García-Jiménez I, et al. Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gαq and Gα13 proteins. J Biol Chem. 2019;294(2):531–546.
  • Sosa MS, Lopez-Haber C, Yang C, et al. Identification of the Rac-GEF P-Rex1 as an Essential Mediator of ErbB signaling in breast cancer. Mol Cell. 2010;40:(6):877–892.
  • Carretero-Ortega J, Walsh CT, Hernández-García R, et al. Phosphatidylinositol 3,4,5-triphosphate-dependent rac exchanger 1 (P-Rex-1), a guanine nucleotide exchange factor for rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine stromal cell derived factor-1 (SDF-1/CXCL-12) linked to rac. Mol Pharmacol. 2010;77(3):435–442.
  • Cash JN, Urata S, Li S, et al. Cryo-electron microscopy structure and analysis of the P-Rex1-Gβγ signaling scaffold. Sci Adv. 2019;5(10):eaax8855.
  • Damoulakis G, Gambardella L, Rossman KL, et al. P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. J Cell Sci. 2014;127(11):2589–2600.
  • Koh CG, Manser E, Zhao ZS, et al. β1PIX, the PAK-interacting exchange factor, requires localization via a coiled-coil region to promote microvillus-like structures and membrane ruffles. J Cell Sci. 2001;114(Pt 23): 4239–4251. PubMed:11739656.
  • Ward JD, Ha JH, Jayaraman M, et al. LPA-mediated migration of ovarian cancer cells involves translocalization of Gαi2 to invadopodia and association with Src and β-pix. Cancer Lett. 2015;356(2):382–391.
  • Feng Q, Baird D, Yoo S, et al. Phosphorylation of the cool-1/β-pix protein serves as a regulatory signal for the migration and invasive activity of Src-transformed cells. J Biol Chem. 2010;285(24):18806–18816.
  • Feng Q, Baird D, Peng X, et al. Cool-1 functions as an essential regulatory node for EGF receptor and Src-mediated cell growth. Nat Cell Biol. 2006;8(9):945–956.
  • Mayhew MW, Jeffery ED, Sherman NE, et al. Identification of phosphorylation sites in βPIX and PAK1. J Cell Sci. 2007;120(22):3911–3918.
  • Chahdi A, Miller B, Sorokin A. Endothelin 1 induces β1Pix translocation and Cdc42 activation via protein kinase A-dependent pathway. J Biol Chem. 2005;280(1):578–584.
  • Chahdi A, Sorokin A. The role of β1Pix/caveolin-1 interaction in endothelin signaling through Gα subunits. Biochem Biophys Res Commun. 2010;391(3):1330–1335.
  • Frank SR, Hansen SH. The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin. 2008;19:234–244. Cell Dev. Biol.
  • Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci. 2016;129(10):1963–1974.
  • Feng Q, Albeck JG, Cerione RA, et al. Regulation of the Cool/Pix proteins. Key binding partners of the Cdc42/Rac targets, the p21-activated kinases. J Biol Chem. 2002;277(7):5644–5650.
  • Yoshii S, Tanaka M, Otsuki Y, et al. αPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene. 1999;18(41):5680–5690.
  • Lyda JK, Tan ZL, Rajah A, et al. Rac activation is key to cell motility and directionality: an experimental and modelling investigation. Comput Struct Biotechnol J. 2019;17:1436–1452.
  • Lawson CD, Donald S, Anderson KE, et al., Welch HCE. P-Rex1 and Vav1 cooperate in the regulation of Formyl-Methionyl-Leucyl-Phenylalanine–Dependent Neutrophil Responses. J Immunol. 2011;186(3):1467–1476. .
  • Heo J, Thapar R, Campbell SL. Recognition and activation of Rho GTPases by Vav1 and Vav2 Guanine nucleotide exchange factors †. Biochemistry. 2005;17(17):6573–6585.
  • Bustelo XR. Regulatory and signaling properties of the Vav Family. Mol Cell Biol. 2000;20(5):1461–1477.
  • Vila‐Coro AJ, Rodríguez‐Frade JM, De Ana AM, et al. The chemokine SDF‐lα triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. Faseb J. 1999;13(13):1699–1710.
  • Fumagalli L, Zhang H, Baruzzi A, et al. The Src family Kinases Hck and Fgr regulate Neutrophil responses to N Formyl-Methionyl-Leucyl-Phenylalanine. J Immunol. 2007;178(6):3874–3885.
  • Aghazadeh B, Lowry WE, Huang XY, et al. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell. 2000;102(5):625–633.
  • Fleming IN, Elliott CM, Buchanan FG, et al. Ca2+/Calmodulin-dependent Protein Kinase II regulates Tiam1 by reversible protein Phosphorylation. Biochemistry. 1999;274:12753–12758.
  • Miyamoto Y, Yamauchi J, Tanoue A, et al. TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc Natl Acad Sci U S A. 2006;103:10444–10449.
  • Minard ME, Kim LS, Price JE, et al. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat. 2004;84(1):21–32.
  • Wang S, Watanabe T, Matsuzawa K, et al. Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. J Cell Biol. 2012;199(2):331–345.
  • Mertens AEE, Pegtel DM, Collard JG. Tiam1 takes PARt in cell polarity. Trends Cell Biol. 2006;16(6):308–316.
  • Fleming IN, Gray A, Downes CP. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components. Biochem J. 2000;351(1):173–182.
  • Hoshino M, Sone M, Fukata M, et al. Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J Biol Chem. 1999;274(25):17837–17844.
  • Goto A, Hoshino M, Matsuda M, et al. Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP-treated PC12D cells. Mol Biol Cell. 2011;22(10):1780–1790.
  • Emami-Nemini A, Gohla A, Urlaub H, et al. The guanine nucleotide exchange factor Vav2 is a negative regulator of parathyroid hormone Receptor/Gq Signaling. Mol Pharmacol. 2012;82(2):217–225.
  • Schulte G, Wright SC. Frizzleds as GPCRs – more conventional than we thought! trends. 2018;39:828–842. Pharmacol Sci.
  • Gammons MV, Renko M, Johnson CM, et al. Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled. Mol Cell. 2016;64(1):92–104.
  • Tanegashima K, Zhao H, Dawid IB. WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. Embo J. 2008;27(4):606–617.
  • Li H, Yang L, Fu H, et al. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis. Nat Commun. 2013;4:1–12.
  • Ward JD, Dhanasekaran DN. LPA Stimulates the Phosphorylation of p130Cas via Gαi2 in Ovarian Cancer Cells. Genes Cancer. 2012;3(9–10):578–591.
  • Matsui H, Harada I, Sawada Y. Src, p130Cas, and Mechanotransduction in cancer cells. Genes Cancer. 2012;3(5–6):394–401.
  • Feng H, Hu B, Liu KW, et al. Activation of Rac1 by Src-dependent phosphorylation of Dock180Y1811 mediates PDGFRα-stimulated glioma tumorigenesis in mice and humans. J Clin Invest. 2011;121(12):4670–4684.
  • Kunisaki Y, Nishikimi A, Tanaka Y, et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol. 2006;174(5):647–652.
  • Wang J, Xu L, Shaheen S, et al. Growth of B Cell receptor microclusters is regulated by PIP2 and PIP3 Equilibrium and Dock2 recruitment and activation. Cell Rep. 2017;21(9):2541–2557.
  • Thelen M, Stein JV. How chemokines invite leukocytes to dance. Nat Immunol. 2008;9:(9):953–959.
  • Park D, Tosello-Trampont AC, Elliott MR, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007;450(7168):430–434.
  • Weng Z, Situ C, Lin L, et al. Structure of BAI1/ELMO2 complex reveals an action mechanism of adhesion GPCRs via ELMO family scaffolds. Nat Commun. 2019;10(1). 10.1038/s41467-018-07938-9
  • Afm TI, Yue H, Scavello M, et al. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a negative effect of caffeine and potential role of microtubules. Cell Signal. 2018;48:25–37.
  • Islam AFMT, Stepanski BM, Charest PG Studying chemoattractant signal transduction dynamics in Dictyostelium by BRET. In: Methods in Molecular Biology. 2016;1407: 63–77.
  • Galés C, Rebois RV, Hogue M, et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods. 2005;3(3):177–184.
  • Xu X, Brzostowski JA, Jin T. Monitoring dynamic GP CR signaling events using fluorescence microscopy, FRET imaging, and single-molecule imaging. Methods Mol Biol. 2009;571:371–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.