518
Views
1
CrossRef citations to date
0
Altmetric
Commentary

A signalling cascade for Ral

Pages 128-135 | Received 17 Nov 2020, Accepted 09 Apr 2021, Published online: 06 May 2021

References

  • Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80(14):2969–2974.
  • Stalnecker CA, Der CJ. RAS, wanted dead or alive: advances in targeting RAS mutant cancers. Sci Signal. 2020;13(624).
  • Yuan TL, Amzallag A, Bagni R, et al. Differential effector engagement by oncogenic KRAS. Cell Rep. 2018;22(7):1889–1902.
  • Ryan MB, Der CJ, Wang-Gillam A, et al. Targeting RAS-mutant cancers: is ERK the key? Trends Cancer. 2015;1(3):183–198.
  • Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev. 2010;20(1):87–90.
  • Hartsough E, Shao Y, Aplin AE. Resistance to RAF inhibitors revisited. J Invest Dermatol. 2014;134(2):319–325.
  • Peschard P, McCarthy A, Leblanc-Dominguez V, et al. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol. 2012;22(21):2063–2068.
  • Frankel P, Aronheim A, Kavanagh E, et al. RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. EMBO J. 2005;24(1):54–62.
  • Jiang H, Luo JQ, Urano T, et al. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature. 1995;378(6555):409–412.
  • Ohta Y, Suzuki N, Nakamura S, et al. The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci U S A. 1999;96(5):2122–2128.
  • Sidhu RS, Clough RR, Bhullar RP. Regulation of phospholipase C-delta1 through direct interactions with the small GTPase Ral and calmodulin. J Biol Chem. 2005;280(23):21933–21941.
  • Gentry LR, Martin TD, Reiner DJ, et al. Ral small GTPase signaling and oncogenesis: more than just 15 minutes of fame. Biochim Biophys Acta. 2014;1843(12):2976–2988.
  • Kashatus DF. Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res. 2013;319(15):2337–2342.
  • Wu B, Guo W. The exocyst at a glance. J Cell Sci. 2015;128(16):2957–2964.
  • Van Dam EM, Robinson PJ. Ral: mediator of membrane trafficking. Int J Biochem Cell Biol. 2006;38(11):1841–1847.
  • Chien Y, Kim S, Bumeister R, et al. RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell. 2006;127(1):157–170.
  • Bodemann BO, Orvedahl A, Cheng T, et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 2011;144(2):253–267.
  • Martin TD, Chen XW, Kaplan RE, et al. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell. 2014;53(2):209–220.
  • Armenti ST, Chan E, Nance J. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell. Dev Biol. 2014;394(1):110–121.
  • Das A, Gajendra S, Falenta K, et al. RalA promotes a direct exocyst-Par6 interaction to regulate polarity in neuronal development. J Cell Sci. 2014;127(3):686–699.
  • Lalli G. RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC. J Cell Sci. 2009;122(10):1499–1506.
  • Teodoro RO, Pekkurnaz G, Nasser A, et al. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. EMBO J. 2013;32(14):2039–2055.
  • Reiner DJ, Lundquist EA. Small GTPases. WormBook. 2018;2018:1–65.
  • Zand TP, Reiner DJ, Der CJ. Ras effector switching promotes divergent cell fates in C. elegans vulval patterning. Dev Cell. 2011;20(1):84–96.
  • Braendle C, Felix MA. Plasticity and errors of a robust developmental system in different environments. Dev Cell. 2008;15(5):714–724.
  • Sternberg PW. Vulval development. WormBook; 2005. p. 1–28, ed. The C. elegans Research Community, WormBook.https://doi/10.1895/wormbook.1.6.1http://www.wormbook.org
  • Sternberg PW, Horvitz HR. Pattern formation during vulval development in C. elegans. Cell. 1986;44(5):761–772.
  • Chen N, Greenwald I. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell. 2004;6(2):183–192.
  • Greenwald IS, Sternberg PW, Horvitz HR. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell. 1983;34(2):435–444.
  • Sternberg PW, Horvitz HR. The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell. 1989;58(4):679–693.
  • Katz WS, Hill RJ, Clandinin TR, et al. Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell. 1995;82(2):297–307.
  • Katz WS, Lesa GM, Yannoukakos D, et al. A point mutation in the extracellular domain activates LET-23, the Caenorhabditis elegans epidermal growth factor receptor homolog. Mol Cell Biol. 1996;16(2):529–537.
  • Balakireva M, Rosse C, Langevin J, et al. The Ral/exocyst effector complex counters c-Jun N-terminal kinase-dependent apoptosis in Drosophila melanogaster. Mol Cell Biol. 2006;26(23):8953–8963.
  • Dan I, Watanabe NM, Kusumi A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 2001;11(5):220–230.
  • Delpire E. The mammalian family of sterile 20p-like protein kinases. Pflugers Arch. 2009;458(5):953–967.
  • Manning BD, Tee AR, Logsdon MN, et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–162.
  • Shin H, Kaplan REW, Duong T, et al. Ral signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans cell fate patterning. Cell Rep. 2018;24(10):2669–2681. e2665.
  • Corl AB, Berger KH, Ophir-Shohat G, et al. Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell. 2009;137(5):949–960.
  • Lam D, Shah S, De Castro IP, et al. Drosophila happyhour modulates JNK-dependent apoptosis. Cell Death Dis. 2010;1(8):e66.
  • Shin H, Braendle C, Monahan KB, et al. Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals. PLoS Genet. 2019;15(5):e1008056.
  • Su YC, Maurel-Zaffran C, Treisman JE, et al. The Ste20 kinase misshapen regulates both photoreceptor axon targeting and dorsal closure, acting downstream of distinct signals. Mol Cell Biol. 2000;20(13):4736–4744.
  • Sluss HK, Han Z, Barrett T, et al. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 1996;10(21):2745–2758.
  • Su YC, Treisman JE, Skolnik EY. The drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway. Genes Dev. 1998;12(15):2371–2380.
  • Ben-Levy R, Hooper S, Wilson R, et al. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol. 1998;8(19):1049–1057.
  • Adhikari H, Counter CM. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat Commun. 2018;9(1):3646.
  • Waaijers S, Munoz J, Berends C, et al. A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biol. 2016;14(1):66.
  • Gillingham AK, Bertram J, Begum F, et al. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. Elife. 2019;8:e45916https://doi.org/10.7554/eLife.45916.
  • Remmelzwaal S, Boxem M. Protein interactome mapping in Caenorhabditis elegans. Curr Opin Syst Biol. 2019;13:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.