396
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Unexplored Cdc42 functions at the budding yeast nucleus suggested by subcellular localization

&
Pages 255-266 | Received 25 Mar 2021, Accepted 09 Oct 2021, Published online: 30 Oct 2021

References

  • Etienne-Manneville S. Cdc42 - the centre of polarity. J. Cell Sci. 2004;117(8):1291–1300.
  • Kim AS, Kakalis LT, Abdul-Manan N, et al. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature. 2000;404(6774):151–158.
  • Prehoda KE, Scott JA, Mullins RD. Integration of Multiple Signals Through Cooperative Regulation of the N-WASP-Arp2/3 Complex. Science. 2000;290(5492):801–806.
  • Garrard SM, Capaldo CT, Gao L, et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J. 2003;22(5):1125–1133.
  • Gotta M, Abraham MC, Ahringer J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol. 2001;11(7):482–488.
  • Kay AJ, Hunter CP. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol. 2001;11(7):474–481.
  • Adamo JE, Moskow, JJ, and Gladfelter, AS, et al. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J Cell Biol. 2001;155:581–592.
  • Zhang X, Bi, E, and , P, et al. Cdc42 Interacts with the Exocyst and Regulates Polarized Secretion. J. Biol. Chem. 2001;276(50):46745–46750.
  • Bi E, Park H-O, Polarization C. Cytokinesis in Budding Yeast. Genetics. 2012;191:347–387.
  • Lu MS, Drubin DG. Cdc42 GTPase regulates ESCRTs in nuclear envelope sealing and ER remodeling. J Cell Biol. 2020;219(8). DOI:10.1083/jcb.201910119
  • Bendezú FO, Vincenzetti, V, and Vavylonis, D, et al. Spontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking. PLOS Biol. 2015;13(e1002097):e1002097.
  • Cole L, Orlovich DA, Ashford AE, et al. Motility of Vacuoles in Filamentous Fungi. Fungal Genet. Biol. 1998;24(1–2):86–100.
  • Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 1995;128(5):779–792.
  • Manolson MF, Proteau, D, and Preston, RA, et al. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J. Biol. Chem. 1992;267(20):14294–14303.
  • Tang F, Kauffman, EJ, and Novak, JL, et al. Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature. 2003;422(6927):87–92.
  • Ishikawa K, Catlett, NL, and Novak, JL, et al. Identification of an organelle-specific myosin V receptor. J. Cell Biol. 2003;160(6):887–897.
  • Jin Y, Weisman LS. The vacuole/lysosome is required for cell-cycle progression. eLife. 2015;4(e08160). DOI:10.7554/eLife.08160
  • Pan X, Roberts, P, and Chen, Y, et al. Nucleus–Vacuole Junctions in Saccharomyces cerevisiae Are Formed Through the Direct Interaction of Vac8p with Nvj1p. Mol Biol Cell. 2000;11(7):2445–2457.
  • Weisman LS, Bacallao R, Wickner W. Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J. Cell Biol. 1987;105(4):1539–1547.
  • Burbelo PD, Drechsel D, Hall A, et al. Motif Defines Numerous Candidate Target Proteins for Both Cdc42 and Rac GTPases. J. Biol. Chem. 1995;270(49):29071–29074.
  • Abdul-Manan N, Aghazadeh, B, and Liu, GA, et al. Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott–Aldrich syndrome’ protein. Nature. 1999;399(6734):379–383.
  • Alber F, Dokudovskaya, S, and Veenhoff, LM, et al. The molecular architecture of the nuclear pore complex. Nature. 2007;450(7170):695–701.
  • Rout MP, Aitchison JD, Suprapto A, et al. The Yeast Nuclear Pore Complex: composition, Architecture, and Transport Mechanism. J. Cell Biol. 2000;148(4):17.
  • Makio T, Lapetina DL, Wozniak RW. Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex. J. Cell Biol. 2013;203(2):187–196.
  • Onischenko E, Stanton LH, Madrid AS, et al. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 2009;185(3):475–491.
  • Doye V, Wepf R, Hurt E. c. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J. 1994;13(24):6062–6075.
  • Aitchison JD, Blobel G, Rout MP. Nup120p: a yeast nucleoporin required for NPC distribution and mRNA transport. J. Cell Biol. 1995;131(6):1659–1675.
  • Heath CV, Copeland CS, Amberg DC, et al. Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated with mutation of the Saccharomyces cerevisiae RAT2/NUP120 gene. J. Cell Biol. 1995;131(6):1677–1697.
  • Dawson TR, Lazarus MD, Hetzer MW, et al. ER membrane–bending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 2009;184(5):659–675.
  • Chadrin A, Hess B, San Roman M, et al. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. J. Cell Biol. 2010;189(5):795–811.
  • Webster BM, Colombi P, Jäger J, et al. Surveillance of Nuclear Pore Complex Assembly by ESCRT-III/Vps4. Cell. 2014;159(2):388–401.
  • Chial HJ, Rout MP, Giddings TH, et al. Saccharomyces cerevisiae Ndc1p Is a Shared Component of Nuclear Pore Complexes and Spindle Pole Bodies. J. Cell Biol. 1998;143(7):1789–1800.
  • Slater ML. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J. Bacteriol. 1973;113(1):263–270.
  • Irniger S, Piatti S, Michaelis C, et al. Genes involved in sister chromatid separation are needed for b-type cyclin proteolysis in budding yeast. Cell. 1995;81(2):269–277.
  • Kirchenbauer M, Liakopoulos D, Steinberg G. An auxiliary, membrane-based mechanism for nuclear migration in budding yeast. Mol Biol Cell. 2013;24(9):1434–1443.
  • Makio T, Stanton LH, Lin -C-C, et al. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 2009;185(3):459–473.
  • Nehrbass U, Rout MP, Maguire S, et al. The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J. Cell Biol. 1996;133(6):1153–1162.
  • Marelli M, Aitchison JD, Wozniak RW. Specific Binding of the Karyopherin Kap121p to a Subunit of the Nuclear Pore Complex Containing Nup53p, Nup59p, and Nup170p. J. Cell Biol. 1998;143(7):1813–1830.
  • Lutzmann M, Kunze R, Buerer A, et al. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 2002;21(3):387–397.
  • Lutzmann M, Kunze, R, and Stangl, K, et al. Reconstitution of Nup157 and Nup145N into the Nup84 Complex. J. Biol. Chem. 2005;280(18):18442–18451.
  • Winey M, Hoyt MA, Chan C, et al. NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J. Cell Biol. 1993;122(4):743–751.
  • Falk JE, Tsuchiya D, Verdaasdonk J, et al. Spatial signals link exit from mitosis to spindle position. eLife. 2016;5(e14036). DOI:10.7554/eLife.14036.
  • Longtine MS, Mckenzie III A, Demarini DJ, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14(10):953–961.
  • Smith NR, Prehoda KE. Robust Spindle Alignment in Drosophila Neuroblasts by Ultrasensitive Activation of Pins. Mol Cell. 2011;43(4):540–549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.