468
Views
1
CrossRef citations to date
0
Altmetric
Brief Report

Allosteric regulation of GRB2 modulates RAS activation

&
Pages 282-286 | Received 09 Mar 2022, Accepted 07 Jun 2022, Published online: 15 Jun 2022

References

  • McKay M, Morrison D. Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007;26(22):3113–3121.
  • Nakhaei-Rad S, Haghighi F, Nouri P, et al. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol. 2018;53(2):130–156.
  • Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS‐MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci. 2010;1214(1):99–121.
  • Dhillon AS, Hagan S, Rath O, et al. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–3290.
  • Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer. 2020;20(7):383–397.
  • Hebron KE, Hernandez ER, Yohe ME. The RASopathies: from pathogenetics to therapeutics. Dis Model Mech. 2022;15(2):dmm049107.
  • Awad MM, Liu S, Rybkin II, et al. Acquired Resistance to KRASG12C Inhibition in Cancer. N Engl J Med. 2021;384(25):2382–2393.
  • Pudewell S, Ahmadian MR. Spotlight on accessory proteins: RTK-RAS-MAPK modulators as new therapeutic targets. Biomolecules. 2021;11(6):895.
  • Pudewell S, Wittich C, Kazemein Jasemi NS, et al. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol. 2021;4(1):1–10.
  • Neumann K, Oellerich T, Urlaub H, et al. The B‐lymphoid Grb2 interaction code. Immunol Rev. 2009;232(1):135–149.
  • Ijaz M, Wang F, Shahbaz M, et al. The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein Pept Lett. 2017;24(12):1084–1095.
  • Giubellino A, Burke TR, Bottaro DP. Grb2 signaling in cell motility and cancer. Expert Opin Ther Targets. 2008;12(8):1021–1033.
  • Rozakis-Adcock M, McGlade J, Mbamalu G, et al. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature. 1992;360(6405):689–692.
  • Ahmed Z, Timsah Z, Suen KM, et al. Grb2 monomer–dimer equilibrium determines normal versus oncogenic function. Nat Commun. 2015;6(1):1–11.
  • Rozakis-Adcock M, Fernley R, Wade J, et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993;363(6424):83–85.
  • Gong Q, Cheng AM, Akk AM, et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol. 2001;2(1):29–36.
  • McDonald CB, Seldeen KL, Deegan BJ, et al. Assembly of the Sos1–Grb2–Gab1 ternary signaling complex is under allosteric control. Arch Biochem Biophys. 2010;494(2):216–225.
  • Lowenstein E, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992;70(3):431–442.
  • Dharmawardana PG, Peruzzi B, Giubellino A, et al. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs. 2006;17(1):13–20.
  • Simon JA, Schreiber SL. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Chem Biol. 1995;2(1):53–60.
  • Mayer BJ, Baltimore D. Signalling through SH2 and SH3 domains. Trends Cell Biol. 1993;3(1):8–13.
  • Pawson T, Schlessingert J. SH2 and SH3 domains. Curr Biol. 1993;3(7):434–442.
  • Dionne U, Bourgault É, Dubé AK, et al. Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nat Commun. 2021;12(1):1–15.
  • Schlessinger J, Lemmon MA. SH2 and PTB domains in tyrosine kinase signaling. Science’s STKE. 2003;2003(191):re12–re12.
  • Bisson N, James DA, Ivosev G, et al. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol. 2011;29(7):653–658.
  • Zhou S, Shoelson SE, Chaudhuri M, et al. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993;72(5):767–778.
  • Lewitzky M, Kardinal C, Gehring NH, et al. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical PxxP core motif. Oncogene. 2001;20(9):1052–1062.
  • Oehrl W, Kardinal C, Ruf S, et al. The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene. 1998;17(15):1893–1901.
  • Welch NG, Li W, Hossain MA, et al. (Re) Defining the proline-rich antimicrobial peptide family and the identification of putative new members. Front Chem. 2020;8:1157.
  • Elias RD, Ma W, Ghirlando R, et al. Proline-rich domain of human ALIX contains multiple TSG101-UEV interaction sites and forms phosphorylation-mediated reversible amyloids. Proc Nat Acad Sci. 2020;117(39):24274–24284.
  • Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9(2):180–186.
  • Reuther GW, Der CJ. The Ras branch of small GTPases: ras family members don’t fall far from the tree. Curr Opin Cell Biol. 2000;12(2):157–165.
  • McDonald CB, El Hokayem J, Zafar N, et al. Allostery mediates ligand binding to Grb2 adaptor in a mutually exclusive manner. J Mol Recog. 2013;26(2):92–103.
  • Montagner A, Yart A, Dance M, et al. A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J Biol Chem. 2005;280(7):5350–5360.
  • Egan SE, Giddings BW, Brooks MW, et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature. 1993;363(6424):45–51.
  • Li NA, Batzer A, Daly R, et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature. 1993;363(6424):85–88.
  • Lemmon MA, Ladbury JE, Mandiyan V, et al. Independent binding of peptide ligands to the SH2 and SH3 domains of Grb2. J Biol Chem. 1994;269(50):31653–31658.
  • Cussac D, Frech M, Chardin P. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline‐rich motifs. EMBO J. 1994;13(17):4011–4021.
  • Houtman JC, Yamaguchi H, Barda-Saad M, et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol. 2006;13(9):798–805.
  • Bartelt RR, Light J, Vacaflores A, et al. Regions outside of conserved PxxPxR motifs drive the high affinity interaction of GRB2 with SH3 domain ligands. Biochim Biophys Acta-Mol Cell Res. 2015;1853(10):2560–2569.
  • Sastry L, Lin W, Wong WT, et al. Quantitative analysis of Grb2-Sos1 interaction: the N-terminal SH3 domain of Grb2 mediates affinity. Oncogene. 1995;11(6):1107–1112.
  • McDonald CB, Seldeen KL, Deegan BJ, et al. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. Biochemistry. 2009;48(19):4074–4085.
  • McDonald CB, Seldeen KL, Deegan BJ, et al. Structural basis of the differential binding of the SH3 domains of Grb2 adaptor to the guanine nucleotide exchange factor Sos1. Arch Biochem Biophys. 2008;479(1):52–62.
  • Innocenti M, Tenca P, Frittoli E, et al. Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol. 2002;156(1):125–136.
  • Liao T-J, Jang H, Nussinov R, et al. High-Affinity Interactions of the nSH3/cSH3 domains of Grb2 with the C-Terminal proline-rich domain of SOS1. J Am Chem Soc. 2020;142(7):3401–3411.
  • Liao T-J, Jang H, Fushman D, et al. SOS1 interacts with Grb2 through regions that induce closed nSH3 conformations. J Chem Phys. 2020;153(4):045106.
  • Tari AM, Lopez-Berestein G. GRB2: a pivotal protein in signal transduction. Semin Oncol. 2001;28(5 Suppl 16):142–147.
  • Kazemein Jasemi NS, Herrmann C, Magdalena Estirado E, et al. The intramolecular allostery of GRB2 governing its interaction with SOS1 is modulated by phosphotyrosine ligands. Biochem J. 2021;478(14):2793–2809.
  • McDonald CB, Bhat V, Kurouski D, et al. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor. Biophys Chem. 2013;175-176:54–62.
  • Tanaka M, Gupta R, Mayer BJ. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol. 1995;15(12):6829–6837.
  • Beigbeder A, Chartier FJM, Bisson N. MPZL1 forms a signalling complex with GRB2 adaptor and PTPN11 phosphatase in HER2-positive breast cancer cells. Sci Rep. 2017;7(1):11514.
  • Watanabe T, Shinohara N, Moriya K, et al. Significance of the Grb2 and son of sevenless (Sos) proteins in human bladder cancer cell lines. IUBMB Life. 2000;49(4):317–320.
  • Laursen L, Kliche J, Gianni S, et al. Supertertiary protein structure affects an allosteric network. Proc Natl Acad Sci U S A. 2020;117(39):24294–24304.
  • Stock G, Hamm P. A non-equilibrium approach to allosteric communication. Philos Trans R Soc Lond B Biol Sci. 2018;373(1749):20170187.
  • Gunasekaran K, Ma B, Nussinov R. Is allostery an intrinsic property of all dynamic proteins? Proteins. 2004;57(3):433–443.
  • Malagrino F, Troilo F, Bonetti D, et al. Mapping the allosteric network within a SH3 domain. Sci Rep. 2019;9(1):8279.
  • Park M-J, Sheng R, Silkov A, et al. SH2 domains serve as lipid-binding modules for pTyr-Signaling PROTEINS. Mol Cell. 2016;62(1):7–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.